CONDITIONALLY COMPACT SEMITOPOLOGICAL ONE-PARAMETER INVERSE SEMIGROUPS OF PARTIAL ISOMETRIES

M. O. BERTMAN

Abstract. The algebraic structure of one-parameter inverse semigroups has been completely described. Furthermore, if B is the bicyclic semigroup and if B is contained in any semitopological semigroup, the relative topology on B is discrete. We show that if F is an inverse semigroup generated by an element and its inverse, and F is contained in a compact semitopological semigroup, then the relative topology is discrete; in fact, if F is any one-parameter inverse semigroup contained in a compact semitopological semigroup, then the multiplication on F is jointly continuous if and only if the inversion is continuous on F, and we describe F in that case. We also show that if (J_t) is a one-parameter semigroup of bounded linear operators on a (separable) Hilbert space, then $(J_t) \cup (J_t^*)$ generates a one-parameter inverse semigroup T with $J_t^{-1} = J_t^*$ if and only if (J_t) is a one-parameter semigroup of partial isometries, and we describe the weak operator closure of T in that case.

1. Introduction. An inverse semigroup is a semigroup in which each element x has a unique inverse x^{-1} with the properties that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. If G is any subgroup of the positive real numbers under ordinary multiplication, let $P = G \cap [1, \infty)$. Let $F_P = \{(x, y, z) \in P^3: y \geq x$ and $y \geq z\}$ together with the following multiplication:

$$(x, y, z)(r, s, t) = \left(\frac{xyz}{y \wedge zr}, \frac{yzs}{(y \wedge zr)(zr \wedge s)}, \frac{zst}{zr \wedge s} \right)$$

where $x \wedge y = \min(x, y)$. Any inverse semigroup generated by a homomorphic image of P is a homomorphic image of F_P [6] and is called a one-parameter inverse semigroup. We mention at this point one homomorphic image of F_P. Let $B_P = P \times P$ together with this multiplication:

$$(x, y)(z, w) = \left(\frac{xz}{y \wedge z}, \frac{yw}{y \wedge z} \right).$$

Received by the editors March 1, 1976.

Key words and phrases. Partial isometries, one-parameter semigroups, inverse semigroups, compact semitopological semigroups.

263
If $P = \{1, x, x^2, \ldots \}$ where $x > 1$, then B_P is the *bicyclic semigroup* whose properties are discussed in [4].

Suppose that Y is a semigroup with a Hausdorff topology in which the maps $x \mapsto xy$ and $x \mapsto yx$ of $Y \rightarrow Y$ are continuous for each y in Y. Then the multiplication on Y is said to be *separately continuous* and Y is called a *semitopological semigroup*. If the map $(x, y) \mapsto xy$ of $Y \times Y \rightarrow Y$ is continuous, then the multiplication on Y is *jointly continuous* (or just *continuous*) and Y is called a *topological semigroup*.

Let X be a one-parameter inverse semigroup generated by the image of P under a continuous homomorphism $f: P \rightarrow X$. Let $j: P \rightarrow F_P$ be the map $x \mapsto (x, x, x)$. Then j is an isomorphism of P into F_P and we can identify P with its image in F_P. Then $x^{-1} = (1, x, 1)$ and hence $(x, y, z) = xy^{-1}z$. Furthermore, if $\tilde{f}: F_P \rightarrow X$ is defined by

$$\tilde{f}(xy^{-1}z) = f(x)f(y)^{-1}f(z),$$

then \tilde{f} is a homomorphism and the following diagram commutes [6], [1]:

$$\begin{array}{ccc}
F_P & \xrightarrow{\tilde{f}} & X \\
\downarrow{j} & & \\
P & \xrightarrow{f} & X
\end{array}$$

If F_P is endowed with the relative product topology which it inherits from R^3, then the multiplication on F_P is jointly continuous. We shall show that if X is embedded densely in a compact semitopological semigroup and that if the inversion on $f(P) \cup f(P)^{-1}$ is continuous, then in fact \tilde{f} is a *continuous* homomorphism of F_P onto X.

One-parameter inverse semigroups occur naturally in $B(H)$, the semigroup of bounded linear operators on Hilbert space. In the weak operator topology, the closed unit ball is a compact semitopological semigroup, and the map $T \rightarrow T^*$ is continuous where T^* is the adjoint of the operator T. A partial isometry is an operator which is isometric on the orthogonal complement of its kernel; it is known [8, p. 99] that T is a partial isometry if and only if $TT^*T = T$. We will show that if $J = \{J_t: t \in [0, \infty)\}$ is a one-parameter semigroup of partial isometries, then $J \cup J^*$ generates a one-parameter inverse semigroup.

This example shows that it is not unreasonable to ask that the map $x \mapsto x^{-1}$ be continuous on X, and in that case we are able to give a description of X.
The author is grateful to D. B. McAlister and to T. T. West for many helpful suggestions. In particular, Professor McAlister pointed out (2.2) as a generalization of (2.3).

1.1. Remark. The closure of an inverse semigroup in a compact topological semigroup is an inverse semigroup, but Brown and Moran [3, Proposition 1] give an example of a unitary group whose weak closure is not an inverse semigroup.

2. The one-parameter inverse semigroups. In this section we summarize the possible congruence relations on F_P (and hence its homomorphic images), as given in [6, 3.10]. We then point out that every one-parameter semigroup J of partial isometries generates a one-parameter inverse semigroup X, and that each of the possibilities for X can be realized as an inverse semigroup generated by a partial isometry.

If $1 < t \in P$, let $I_t = \{xy^{-1}z : y > t\} \subseteq F_P$ and $I_t^0 = \{xy^{-1}z \in F_P ; y > t\}$. I_t and I_t^0 are the only ideals of F_P. Let α and β be the congruences on F_P defined so that $xy^{-1}z \alpha rs^{-1}t$ if and only if $x = r$ and $yt = sz$ and $xy^{-1}z \beta rs^{-1}t$ if and only if $z = t$ and $yr = xs$. Then $F_P/\alpha \approx B_P \approx F_P/\beta$. For each subgroup N of G, define σ_N to be the group congruence on F_P defined so that $xy^{-1}z \sigma_N rs^{-1}t$ if and only if $xzsrty \in N$. Then if I is an ideal of F_P and $\delta = \alpha, \beta,$ or σ_N, define the relation $I\delta$ by $xy^{-1}z I\delta rs^{-1}t$ if and only if either

(a) $xy^{-1}z$ and $rs^{-1}t$ are in I and $xy^{-1}z \delta rs^{-1}t$ or
(b) $xy^{-1}z = rs^{-1}t \notin I$.

2.1. Proposition (Eberhart and Selden). Every congruence on F_P is $I\delta$ for some ideal I and congruence $\delta = \alpha, \beta,$ or σ_N. Hence the only possible homomorphic images of F_P are $(F_P \setminus I) \cup B_P$, $(F_P \setminus I) \cup (G/N)$ or F_P [6, Theorem 3.10].

2.2. Proposition. Let T be a semigroup with an involution $*$, i.e., a mapping $u \rightarrow u^*$ such that $(uv)^* = v^*u^*$ and $(u^*)^* = u$, and let $R = \{R_t : t \in P\}$ be a one-parameter subsemigroup of T. Then $\langle R, R^* \rangle$, the semigroup generated by $R \cup R^*$, is an inverse semigroup if and only if

(i) $R_tR_t^*R_t = R_t$ for each t in P and
(ii) $R_sR_t^*R_tR_s = R_sR_t^*R_tR_s$ for each s and t in P.

Proof. The conditions are clearly necessary. Now if R is as above, and $s > t$, we have

$R_sR_t^* = R_{s-t}R_tR_t^* = R_{s-t}R_t^*R_{s-t} = R_sR_t^*R_{s-t} = R_sR_t^*R_{s-t}$.

Similarly, $R_t^*R_s = R_{s-t}R_t^*R_s$, and it follows that any "word" from $\langle R, R^* \rangle$ can be expressed as a triple $R_xR_yR_z$ where $y > x$ and $y > z$. The arguments
of [6, pp. 56–57] can be used to show that the map \(h: F_p \to \langle R, R^* \rangle \) defined by \(h(xy^{-1}z) = R_xR_yR_z \) is a homomorphism, and since \(F_p \) is an inverse semigroup, so is its image \(\langle R, R^* \rangle \).

Now let \(J = \{ J_t \}_{t=0}^\infty \) be a one-parameter semigroup of partial isometries on a (separable) Hilbert space. By [7, Theorem B],

\[
J_t = U_t \oplus K_t \oplus S_t \oplus T_t,
\]

where \(U_t \) is unitary, \(K_t \) is purely isometric, \(S_t \) is purely coisometric, and \(T_t \) is a nilpotent and hence, by [12], the direct integral of truncated shifts. Recall that a truncated shift is an operator which is unitarily equivalent to \(R_t \), where for \(f \) in \(L^2(K, a) \) (if \(K \) is a separable Hilbert space and \(a > 0 \), \(L^2(K, a) \) is the Hilbert space of measurable \(K \)-valued functions on \([0, a]\) with square-integrable \(K \)-norm):

\[
R_t f(x) = \begin{cases} 0 & \text{if } t < x < a - t \\ f(x - t) & \text{if } t < x \leq a \\ f(x + t) & \text{if } 0 < x < a - t \\ 0 & \text{if } x \geq a \\ f(x) & \text{if } x = 0 \\ 0 & \text{if } x < 0
\end{cases}
\]

and \(R_t = 0 \) if \(t > a \). This \(a \) is called the index of \(R_t \). Since

\[
R_t^* f(x) = \begin{cases} 0 & \text{if } a - t < x \leq a \\ f(x) & \text{if } 0 < x < a - t \\ 0 & \text{if } x \geq a \\ f(x) & \text{if } x = 0 \\ 0 & \text{if } x < 0
\end{cases}
\]

and \(R_t^* = 0 \) if \(t > a \), we have the following.

2.3. Proposition. If \(R = (R_t) \) is a one-parameter semigroup of truncated shifts of index \(a \), then \(\langle R, R^* \rangle \) is isomorphic to \(F_p / I_a \).

Proof. Since, for \(x, y, \) and \(z \) in \(P \), with \(y < a \),

\[
R_x R_y R_z f(t) = \begin{cases} 0 & \text{if } t < x \text{ or } t > a - y + x \\ f(t - x + y - z) & \text{otherwise,}
\end{cases}
\]

it is easy to see that \(R \) satisfies the conditions of 2.2 and hence \(\langle R, R^* \rangle \) is an inverse semigroup. Furthermore, one sees that \(R_x R_y^* R_z = 0 \) if and only if \(y > a \) and hence by 2.1, \(\langle R, R^* \rangle \approx F_p / I_a \).

It now follows that if \(T = \{ T_t \} \) is a one-parameter semigroup of nilpotent partial isometries of index \(a \) (and hence a direct integral of truncated shifts of index less than or equal to \(a \)), then \(\langle T, T^* \rangle \) is isomorphic to \((F_p \setminus I_a) \cup \{ 0 \} \).

Proposition 2.2 also gives the following.

2.4. Proposition. If \(J = \{ J_t \} = \{ U_t \oplus K_t \oplus S_t \oplus T_t \} \) is a one-parameter semigroup of partial isometries, then \(\langle J, J^* \rangle \) is a one-parameter inverse semigroup. Furthermore, if \(\{ U_t \} \neq I \) is a semigroup of unitary operators, \(\{ K_t \} \) of nonunitary isometries, \(\{ S_t \} \) of nonunitary coisometries, and \(\{ T_t \} \) of nilpotents of index \(a \), then

1. \(\langle \{ U_t \oplus S_t \}, \{ U_t^* \oplus S_t^* \} \rangle \approx (F_p \setminus I_a) \cup R^+; \)
2. \(\langle \{ K_t \oplus T_t \}, \{ K_t^* \oplus T_t^* \} \rangle \approx (F_p \setminus I_a) \cup B_p; \)
3. Conditionally compact one-parameter inverse semigroups. We now assume that X is a one-parameter inverse semigroup densely embedded in a compact semitopological semigroup Y. In case $P = \{1, x, x^2, \ldots \}$ where $x > 1$, we show that X has the discrete topology as a subspace of Y. Furthermore, if P is dense in $[1, \infty)$, and the inversion $x \mapsto x^{-1}$ on $P \cup P^{-1}$ is continuous, then the multiplication is continuous on X. We then assume, from 3.2.7 on, that inversion is continuous on X, and describe X.

Since semigroups of the type B_P are somewhat more accessible than those of the more general type, and some information is known about them in case $P = \{1, x, x^2, \ldots \}$ for $x > 1$, we devote a short section to these semigroups.

3.1. Bicyclic Semigroups. As we have mentioned before, if $P = \{1, x, x^2, \ldots \}$ where $x > 1$, then B_P is the familiar bicyclic semigroup, B, so-called because it is generated by two mutually inverse elements p and q subject to the generating relation $pq = 1$; we summarize the results of [2] on this subject:

(a) B is a discrete subspace of \overline{B} in the relative topology. (Originally proved in [5], as was (b).)

(b) $\overline{B} \setminus B$ is a closed two-sided ideal of \overline{B}.

(c) The minimal idempotent e of the monothetic semigroup $\Gamma = \{q, q^2, \ldots \}$ is the minimal idempotent of \overline{B}, and the minimal ideal K of Γ, which is a compact topological group, with identity e, in the relative topology from \overline{B}, is the minimal ideal of \overline{B}. Furthermore $K = e\overline{B} = \overline{B}e$.

(d) The decreasing sequence $q^n p^n$ of idempotents converges to an idempotent w; wB is a cyclic group with identity $w\overline{B} = wB = B \setminus B$.

(e) If the map $x \mapsto x^*$ is a continuous involution, then e and w are selfadjoint, and for each $x \in \overline{B}$, $(ex)^* = ex^* = (ex)^{-1}$ in K.

(f) If $B = \langle T, T^* \rangle$ where T is an isometry, then w is the Wold idempotent which decomposes H into $H_1 \oplus H_2$ where $T|H_1$ is unitary and $T|H_2$ is a unilateral shift. The minimal idempotent e decomposes H into $H_3 \oplus H_4$, where $T|H_3$ is unitary, and H_4 is the closed linear span of the eigenvalues of T (and T^*) corresponding to its unimodular eigenvalues.

These results show that we have no more (nor less) information about the closure of B than we have about the closure of a group, which examples in [3] and [12] show may be arbitrarily pathological.

If P is a dense subsemigroup of $[1, \infty)$, the existence of the idempotent w follows exactly as in [2], as does the fact that wB_P is a group. That $B_P \setminus B_P = wB_P$ turns out to be equivalent to the continuity of the inversion on B_P as we see for F_P in 3.2.6, and from 3.2.7 on, we shall assume this condition.
3.2. F_p. Suppose $X = F_p$. Then X may be pictured as below:

![Diagram](image)

The idempotents of F_p are precisely those of the form $x(yx)^{-1}y$ where x and y are elements of P. [6, 2.13]. Now the idempotents $\{xx^{-1} : x \in P\}$ and $\{x^{-1}x : x \in P\}$ form two decreasing nets as $x \to \infty$, and hence there exist two idempotents E and F such that $xx^{-1} \to E$ and $x^{-1}x \to F$ as $x \to \infty$. Since xx^{-1} is decreasing, $E \neq xx^{-1}$ for any x in P, and similarly, $F \neq x^{-1}x$ for any x in P. Furthermore, $xx^{-1}E = E = Exx^{-1}$ for every x in P and $x^{-1}xF = F = Fx^{-1}x$ for every x in P.

Proposition 3.2.1. E and F commute with every element $xy^{-1}z$ of F_p, and hence with every element of $\overline{F_p}$.

Proof. As $x \to \infty$, $xx^{-1} \to E$, so if $r \in P$, $rxx^{-1} = r(r^{-1}r)(xx^{-1}) = r(xx^{-1})(r^{-1}r)$ (since idempotents commute) = $(rx)(rx)^{-1}r \to Er$; but $rxx^{-1} \to rE$, so $Er = rE$. On the other hand, for each r in P, $xx^{-1}r^{-1} = xx^{-1}rr^{-1} = r^{-1}xx^{-1}r^{-1} = r^{-1}(rx)(xx^{-1}) \to r^{-1}E$; but $xx^{-1}r^{-1} \to Er^{-1}$, so $Er^{-1} = r^{-1}E$ for each r in P. Hence if $xy^{-1}z \in F_p$, $Exy^{-1}z = xEy^{-1}z = xy^{-1}Ez = xy^{-1}zE$. Similarly, F commutes with each element of F_p and hence with each element of $\overline{F_p}$.

Proposition 3.2.2. If $\{z_a\}$ and $\{y_a\}$ are unbounded increasing nets from P, then $\{x_a^{-1}y_a^{-1}y_a^{-1}\}$ converges to EF.

Proof. Let $(x_{a_k}^{-1}y_{a_k}^{-1}y_{a_k}^{-1})$ be a subnet which converges, say to Z. Then $EFx_{a_k}^{-1}y_{a_k}^{-1}y_{a_k}^{-1} = Ex_{a_k}^{-1}Fy_{a_k}^{-1}y_{a_k}^{-1} = EF$, but this net converges to EFZ, so $EF = EFZ$. Now let $x \in P$, and assume $x_{a_k} > x$. Then $xx^{-1}x_{a_k}^{-1}y_{a_k}^{-1}y_{a_k}^{-1}y_{a_k}^{-1} \to Z$, so $xx^{-1}Z = Z$ for each x in P. Similarly $Zx^{-1}x = Z$ for each x in P, and
hence, letting x approach ∞, $EZ = Z = ZF$, so $EFZ = EZF = EZ = Z$, so $EF = EFZ = Z$. It now follows that $x_a^{-1}y_a^{-1}y_a \to EF$.

Proposition 3.2.3. $EF_p \cap F_p = \emptyset$; $FF_p \cap F_p = \emptyset$ and $EFF_p \cap F_p = \emptyset$.

Proof. Suppose $E \in F_p$; then $E = xx^{-1}y^{-1}y$ for some x and y in P. But if $k > x$, $E = kk^{-1}E = kk^{-1}xx^{-1}y^{-1}y = kk^{-1}y^{-1}y \neq xx^{-1}y^{-1}y = E$. Thus E is not in F_p, and a similar maneuver shows that F and EF are not in F_p. Now we show that $EF_p \cap F_p = \emptyset$. Suppose that there exists x in P such that $Ex^{-1} \in F_p$. Then $E = Exx^{-1} = xEx^{-1} \in F_p$. So there is no such x. Now if $xy^{-1}z$ is any element of F_p such that $Exy^{-1}z \in F_p$, then

$$E(y/x)^{-1} = Exx^{-1}(y/x)^{-1} = Exy^{-1}$$

$$= xy^{-1}Exz^{-1} = (Exy^{-1})z^{-1} \in F_p,$$

and this contradiction proves that there is no such $xy^{-1}z$. The proof for F and EF is similar.

Proposition 3.2.4. If $(x_a y_a^{-1}z_a)$ is a net from FP such that (y_a) is unbounded, then if $u \in EFP \cup FF_p$.

Proof. Note that if e is any idempotent and x any element of FP, then $ex = x$ if and only if $x \in eFP$. Now if (x_a) is unbounded, for any k in P, x_a is eventually larger than k, so $kk^{-1}x_a y_a^{-1}z_a = x_a y_a^{-1}z_a \to u$, so $kk^{-1}u = u$, and hence $Eu = u$. If u were in F_p, u would be in EF_p, so $u \notin F_p$. Similarly, if (z_a) is unbounded, u would be in $FP \setminus F_p$. If (x_a) and (z_a) are both bounded nets and (y_a) is unbounded, then for every $x > \sup\{x_a\}$,

$$x^{-1}xx_a y_a^{-1}z_a = x^{-1}xx_a x_a^{-1}(y_a/x_a)^{-1}z_a$$

$$= x_a x_a^{-1}x^{-1}x(y_a/x_a)^{-1}z_a$$

$$= x_a x_a^{-1}(y_a/x_a)^{-1}z_a = x_a y_a^{-1}z_a \to u.$$

But $x^{-1}xx_a y_a^{-1}z_a \to x^{-1}xu$, so $x^{-1}xu = u$, and again $u \in FP \setminus F_p$.

Proposition 3.2.5. If $P = \{1, x, x^2, x^3, \ldots \}$, then F_p has the discrete topology as a subspace of any compact semitopological semigroup.

Proof. Suppose $x_a y_a^{-1}z_a \to xy^{-1}z$. Then by 3.2.4, (y_a), (x_a) and (z_a) are bounded nets in P. Hence we can find x_0, y_0, z_0 and subnets x_{a_1}, y_{a_1}, z_{a_1} such that $x_{a_1} \to x_0$, $y_{a_1} \to y_0$ and $z_{a_1} \to z_0$. Thus eventually $x_{a_1} = x_0$, $y_{a_1} = y_0$, and $z_{a_1} = z_0$, and hence eventually $x_{a_1} y_{a_1}^{-1} z_{a_1} = x_0 y_0^{-1} z_0$. Thus since

$$x_{a_1} y_{a_1}^{-1} z_{a_1} \to xy^{-1}z, \quad x_0 y_0^{-1} z_0 = xy^{-1}z.$$
multiplication on F_P and the inversion map on F_P are continuous functions. Moreover, since every convergent net which is bounded in its second coordinate converges to a point of F_P, and every convergent net which is unbounded in its second coordinate converges to a point of $\overline{F_E P}$ or $\overline{F_F P}$, we see that $\overline{F_E P} \cup \overline{F_F P}$ is an ideal of $\overline{F_P}$ and $\overline{F_P} \setminus F_P = \overline{E_F P} \setminus \overline{F_F P}$. We next show that all these related conditions are equivalent.

Proposition 3.2.6. If F_P is contained densely in a compact semitopological semigroup, and $P \subseteq F_P$ is a continuous embedding, then the following are equivalent:

(a) Inversion is continuous on $P \cup P^{-1}$;
(b) $P^{-1} \subseteq F_P$ is a continuous embedding;
(c) The topology on F_P is the product topology;
that is, $x_a y_a^{-1} z_a \rightarrow x y z$ if and only if $x_a \rightarrow x, y_a \rightarrow y$, and $z_a \rightarrow z$;
(d) $\{y_a\}$ is a bounded net from P, and if $x_a y_a^{-1} z_a \rightarrow u, u \in F_P$;
(e) $\overline{F_P} \setminus F_P = \overline{EF_P} \cup \overline{FF_P}$.

Proof. The implications (a) \Rightarrow (b) and (c) \Rightarrow (d) are easy. We show (a) \Rightarrow (c) and (d) \Rightarrow (a), and (d) \Rightarrow (e) \Rightarrow (f) \Rightarrow (d).

(a) \Rightarrow (c). Suppose inversion is continuous in $P \cup P^{-1}$. We note that if $x_a y_a^{-1} z_a \rightarrow u$ where $x_a \rightarrow x$ and $z_a \rightarrow z$, and if $x > 1$, and $1 < r < x$, then since $r < x_a$ eventually, $r r^{-1} x_a y_a^{-1} z_a = x_a y_a^{-1} z_a$ eventually, so $r r^{-1} u = u$. (Similarly $u t^{-1} t = u$ if $t < z$.) Now if $x_a \rightarrow x$, we show that $x_a x_a^{-1} \rightarrow xx^{-1}$.

We can assume that $x_a x_a^{-1} \rightarrow u$ for some $u \in \overline{F_P}$. If $r > x$, then eventually $r > x_a$, so $r^{-1} r x_a x_a^{-1} = r^{-1} r$, so $r^{-1} = r^{-1} u$; letting $r \rightarrow x$, $r^{-1} \rightarrow r^{-1}$ by assumption and thus $x^{-1} = x^{-1} u$, and $xx^{-1} = xx^{-1} u$. If $x_a > x$ frequently, then

$$xx^{-1} x_a x_a^{-1} = x_a x_a^{-1}$$

frequently, so $xx^{-1} u = u$. On the other hand, if $x_a < x$ eventually, then since $xx_a^{-1} \rightarrow xx^{-1}$ we have

$$xx_a^{-1} u = (x / x_a) x_a x_a^{-1} u = x / x_a u$$

by the above, so $xx^{-1} u = u$, so in either case, $u = xx^{-1} u = xx^{-1}$. Similarly $x^{-1} x_a \rightarrow x^{-1} x$. Now if $x_a \rightarrow x, y_a \rightarrow y, z_a \rightarrow z$, we can assume $x_a y_a^{-1} z_a \rightarrow u$.

Let $r > x$ and $t > z$; then

$$rr^{-1} x_a y_a^{-1} z_a t^{-1} t = r \left(x_a y_a^{-1} z_a \right)^{-1} t,$$

so

$$rr^{-1} u t^{-1} t = r \left(y / x z \right)^{-1} t = rr^{-1} (y t / x z) t.$$
Letting $r \to x$, we have $xx^{-1}ut^{-1}t = xx^{-1}(yt/xz)^{-1}z = x(y/z)^{-1}t = x(y/z)^{-1}t$, and letting $t \to z$,

$$u = xx^{-1}uz^{-1}z = x(y/z)^{-1}z^{-1}z = xy^{-1}z.$$

It follows that $x\alpha x^{-1}z \to xy^{-1}z$ if and only if $x \to x, y \to y, and z \to z$.

(d) \Rightarrow (a). Let $x \to x$ in P, and suppose $x^{-1} \to rs^{-1}t$ in F_p. We show $r < x$, and $t < x$. For suppose $r > x$. Then $r > x_\alpha$ eventually, so since

$$rr^{-1}\left(\frac{r}{x_\alpha}\right) = rx_\alpha^{-1} \to rs^{-1}t = r^2\left(\frac{r^2s}{r^2 + s}\right)^{r^2 s}$$

we have

$$rr^{-1}/x = r^2\left(\frac{r^2s}{r^2 + s}\right)^{-1}$$

and hence $r = 1$, and this contradiction shows that $r < x$; similarly $t < x$.

Now suppose that $s < x$. Then since $s < x_\alpha$ eventually, and $x_\alpha^{-1} = x_\alpha^{-1}ss^{-1} \to rs^{-1}ss^{-1} = rt(st)^{-1}t$, we have $t = 1$. Similarly, we can show $r = 1$. Thus $x_\alpha^{-1} \to s^{-1}$ where $s < x$. Now if $x_\alpha < x$ frequently, the fact that

$$(x/x)x^{-1} = x_\alpha^{-1}xx^{-1} \to s^{-1}xx^{-1} = (x/s)x^{-1}$$

implies that $x = s$. If $x_\alpha > x$ frequently, then

$$s^{-1} = \lim_{\alpha} x_\alpha^{-1} = \lim_{\alpha} (x_\alpha^{-1}xx^{-1}) = s^{-1}xx^{-1} = (x/s)x^{-1},$$

so $x = s$. Hence if $x_\alpha^{-1} \to rs^{-1}t$, $r < x$, $t < x$, and $s > x$. Suppose $s > x$.

Then $s > x_\alpha$ eventually, so since $(s/x_\alpha)s^{-1} = x_\alpha^{-1}ss^{-1} \to rs^{-1}ss^{-1} = rt(st)^{-1}t, t = 1$, and $s/x = r$. Similarly, $r = 1$, so $s = x$. Therefore, if $x_\alpha \to x$, then $x_\alpha^{-1} \to x^{-1}$.

(d) \Rightarrow (e). Let $u \in F_p \setminus F_p$. Then $u = \lim_{\alpha} x_\alpha y_\alpha^{-1}z_\alpha$, where $\{y_\alpha\}$ is unbounded. As in 3.2.4, either $Eu = u$ or $Fu = u$. Hence $u \in \overline{F_p} \cup \overline{F_p}$. If $v \in \overline{F_p} \cup \overline{F_p}$, then $Ev = v$ or $Fv = v$, so by 3.2.3, $v \in \overline{F_p} \setminus F_p$.

(e) \Rightarrow (f). Suppose $F_p \setminus F_p = \overline{F_p} \cup \overline{F_p}$. If $u \in \overline{F_p} \setminus F_p$, then either $Eu = u$ or $Fu = u$, so if $v \in \overline{F_p}$, $uv = Ev \in F_p$, or else $uv = Fuw \in \overline{F_p}$, so $uv \in \overline{F_p} \setminus F_p$.

(f) \Rightarrow (d). We first show that if $\{y_\alpha\}$ is bounded and $y_\alpha^{-1} \to u$, then $u \in F_p$.

Let $r > y_\alpha$ for each α. We can assume y_α converges, say to y in P, and hence $r^{-1}ru = r^{-1}r/y$, and since $r^{-1}ru \in F_p, u \in F_p$. Now let $x_\alpha y_\alpha^{-1}z_\alpha \to v$. Let $r > x_\alpha$ and $t > z_\alpha$ for each α. Then

$$rr^{-1}x_\alpha y_\alpha^{-1}z_\alpha^{-1}t^{-1} = r\left(\frac{y_\alpha t}{x_\alpha z_\alpha}\right)^{-1}t;$$

we can assume $r_\alpha t^{-1}/x_\alpha z_\alpha$ converges to q, hence $q \in F_p$; so $rr^{-1}vt^{-1}t = qrt \in F_p$ and hence $v \in F_p$.
3.3. For the remainder of this paper, we will assume \(X \) is a homomorphic image of \(F_p \) embedded densely in a compact semitopological semigroup, and that the inversion on \(X \) is a continuous mapping.

Proposition 3.3.1. If \(X = F_p/\delta \) and if \(\delta^\delta \) is the natural map of \(F_p \) to \(X \), then, under the assumption that inversion is continuous on \(X \), \(\delta^\delta \) is a continuous homomorphism from \(F_p \) with the product topology onto \(X \).

Proof. It follows as in 3.2.6 that \(\delta^\delta \) is continuous on \(F_p \setminus I \) where \(\delta = I_a \).
Now since \(\delta^\delta \) must be continuous on \(P \), we know \(I = I_a \) for some \(a > 1 \) and if \(\sigma = \sigma_N \) for some subgroup \(N \) of \(G \), \(N \) must be a closed subgroup of \(G \). We can assume \(P \) is dense in \([1, \infty)\). We prove the proposition for \(F_p/I_a \sigma_N \) and point out that the proofs for the remaining cases are similar.

Suppose \(X = F_p/I_a \sigma_N \). Then we note that \(X \approx (F_p/I_a) \cup B_p \), where the multiplication is as follows: If both \(u \) and \(v \) are in \(F_p \) then \(uv \) is as usual. If either \(u \) or \(v \) is in \(B_p \), then \(uv = \alpha^\delta(u)\alpha^\delta(v) \). For the sake of simplifying the notation, we equate \(xy^{-1}z \) with \((x, y/z)\) if \(y > a \).

Let \(x_a \rightarrow a \) from \([1, a)\), and suppose \(x_a x_a^{-1} \rightarrow e \). Since for each \(r < a \), \(x_a x_a^{-1} rr^{-1} = x_a x_a^{-1} \) eventually, \(err^{-1} = e \). Now \(x_a x_a^{-1}(a, a) = (a, a) \), so \(e(a, a) = (a, a) \). But \(e(a/x_a)^{-1} \rightarrow e \) as \(x_a \rightarrow a \), and

\[
e(a/x_a)^{-1} = e x_a x_a^{-1}(a/x_a)^{-1} = e(x_a, a) \rightarrow e(a, a) = (a, a),
\]

so \(e = (a, a) \). Similarly, if \(x_a^{-1} x_a \rightarrow f, f(1, 1) = (1, 1) \), so since

\[
f(a/x_a) = f x_a^{-1} x_a(a/x_a) = f x_a^{-1}(a, 1) = f(a/x_a, 1) \rightarrow f(1, 1)
\]

and \(f(a/x_a) \rightarrow f \), we have \(f = f(1, 1) = (1, 1) \). Now suppose that \(x_a \rightarrow x \), and \(y_a \rightarrow b > a \); we assume \(x_a y_a^{-1} \rightarrow u \). Then \(y_a > a \) eventually, so \(x_a y_a^{-1} = (x_a, y_a) \) eventually, and \(x_a y_a^{-1} \rightarrow (x, b) \). If \(y_a \rightarrow a \), we can assume \(y_a < a \) eventually. As above, if \(r < a \), \(x_a y_a^{-1} = x_a y_a^{-1} rr^{-1} \rightarrow ur^{-1} \) so \(u = ur^{-1} \) and hence, letting \(r \rightarrow a \), \(u = u(a, a) \). But \(x_a y_a^{-1}(a, a) = (x_a/a, y_a) \rightarrow (x, a) \) so \(u = (x, a) \). If \(z_a \rightarrow z \), and \(y_a \rightarrow b > a \), then since \(y_a^{-1} z_a = (1, y_a/z_a) \) eventually, \(y_a^{-1} z_a \rightarrow (1, b/z) \). If \(y_a \rightarrow a \), assume \(y_a^{-1} z_a \rightarrow u \), and \(y_a < a \) eventually.

Then if \(r < a, r^{-1} u = u \), and, letting \(r \rightarrow a, (1, 1) u = u \) by the above; but \((1, 1)(y_a^{-1} z_a) = (1, y_a/z_a) \rightarrow (1, a/z) \) so \(u = (1, a/z) \). Now we show in general that if \(x_a \rightarrow x \), \(y_a \rightarrow y \), and \(z_a \rightarrow z \), then \(x_a y_a^{-1} z_a \rightarrow xy^{-1}z \). We can assume \(x_a y_a^{-1} z_a \rightarrow u \). If \(y > a \), then \(x_a y_a^{-1} z_a = (x_a, y_a/z_a) \) eventually and we are done. If \(y = a \) and \(x > 1 \), suppose \(x < a \), and let \(x < r < a \). Then eventually \(rr^{-1} x_a y_a^{-1} z_a = r(y_a/x_a) z_a \rightarrow (r, xy/zz) \) so \(r^{-1} u = (r, ry/zz) \), and, letting \(r \rightarrow x, xx^{-1} u = (x, y/z) \) but as before \(xx^{-1} u = u \), so \(u = (x, y/z) \). Finally, if \(x = a \), then \(u = (a, a) u = (a, a/z) \). Thus if \(\delta^\delta(x_a) \rightarrow \delta^\delta(x), \delta^\delta(y_a) \rightarrow \delta^\delta(y), \) and \(\delta^\delta(z_a) \rightarrow \delta^\delta(z) \), then \(\delta^\delta(x_a y_a^{-1} z_a) \rightarrow \delta^\delta(xy^{-1}z) \), and it follows that \(\delta^\delta \) is a continuous homomorphism of \(F_p \) onto \(X \). The proof is exactly analogous if \(X = F_p/I_a \sigma_N \).
Now recall that for each X, the decreasing nets $\{\delta^q(x)\delta^q(x)^{-1}: x \in P\}$ and $\{\delta^q(x)^{-1}\delta^q(x): x \in P\}$ converge to idempotents E and F respectively as $x \to \infty$. Furthermore, in each case, E and F commute with X, and 3.3.1 allows us to conclude that in fact, $\overline{X} = X \cup \overline{EX} \cup \overline{FX}$. We point out that if $X = F_p/I_\alpha{\sigma}_\alpha$, $E = F = \delta^q(a^{-1})$ is the identity element of the group which is the minimal ideal of X. If $X = F_p/I_\alpha{\sigma}_\alpha$, $F = (1, 1) = \delta^q(a^{-1})$ but $E \notin X$. In this case, $\overline{X} \setminus X = \overline{EX}$. Similarly, if $X = F_p/I_\alpha{\beta}$, then $\overline{X} \setminus X = \overline{FX}$.

Proposition 3.3.3. If X is any homomorphic image of F_p, then $EX \approx B_p$ or EX is a commutative group; EX is a group if and only if $E = EF$, and these remarks are true if E and F are interchanged. Furthermore, $\overline{X} = X \cup \overline{EX} \cup \overline{FX}$.

Proof. Since E commutes with each element of X, the map $u \to Eu$ is a homomorphism of X to EX. Hence $EX = F_p/I_\alpha{\sigma}_\alpha$ for some $b \in P$ and congruence σ on FP. Since $Exx^{-1} = E$ for each x in $(I_\alpha{\sigma}_\alpha)(P)$, $b = 1$, and hence $EX = F_p/\beta$ or F_p/σ_α. In the first case, $EX \approx B_p$ with E as identity and

$$E\delta^q(xy^{-1}z) = E(y/x)^{-1}z \approx (y/x, z),$$

and the idempotents $Ex^{-1}x$ converge to EF as $x \to \infty$. It is easy to see that EFX is a commutative group in this case. In the second case, EX is a group and since $Ex^{-1}x = E$, $E = EF$. The discussion in the previous paragraph together with 3.2.6 implies that $\overline{X} = X \cup \overline{EX} \cup \overline{FX}$.

The idempotents E and F are thus maximal among idempotents of $\overline{X} \setminus X$, if $\overline{X} \setminus X \neq \emptyset$. We now turn to a discussion of minimal idempotents of \overline{X}. The one-parameter semigroups $\delta^q(P)$ and $\delta^q(P^{-1})$ possess as kernels (minimal ideals) commutative compact topological groups K and K', respectively, with identities e_0 and f_0. If $X = B_p$, it follows as in [2] that $e_0 = f_0$ and hence $K = K'$ is the minimal ideal for \overline{X}; furthermore $K \subseteq EX$ and $K = \overline{EX}$ if and only if $e_0 = E = w$. These facts are easy to prove if X is any of the other images of F_p; we discuss the case where $X = F_p$.

If $\{x_a\}$ is a net from P which converges to e_0, by 3.2.6, $\{x_a\}$ is unbounded. If $x \in P$, $x < x_a$ frequently, so $xx^{-1}x_a = x_a$ frequently and hence $xx^{-1}e_0 = e_0 = Ee_0 = e_0E$. Similarly $e_0F = e_0 = Fe_0$. Thus $EFx_0 = e_0$ so $e_0 \in \overline{EFX}$, and hence e_0 commutes with each element of \overline{X}. Now if $y \in P$, $x_0y^{-1} \to e_0y^{-1}$. But since $x_0 > y$ frequently, $x_0y^{-1} = x_0x_0^{-1}x_0/y$, and $e_0x_0^{-1}y \to e_0y^{-1}$. Thus since $e_0x_0^{-1} = e_0x_0^{-1}x_0/y = e_0x_0/y$, e_0y^{-1} is in $\overline{K} = K$. Similarly $y^{-1}e_0$ is in \overline{K}. Thus $e_0X = Xe_0 \subseteq K$, and $e_0\overline{X} = \overline{Xe_0} \subseteq K$. Now if e is any idempotent of \overline{X}, $(e_0e)(e_0e) = e_0e_0ee = e_0e$, and since $e_0e \in K$, $e_0e = e$. Hence e_0 is the minimal idempotent for \overline{X}. It follows that $e_0 = f_0$ and as in [2, Proposition 2] that K is the kernel for \overline{X} and that $K = e_0\overline{X}$. We summarize this discussion in the following proposition.
Proposition 3.3.4. If \(X = F_P/\delta \), then the kernel of \(\overline{X} \) is \(K \), the compact topological group which is the kernel of \(\delta^\ast(P) \). If \(e_0 \) is the identity element of \(K \), then \(K = e_0\overline{X} \).

We now derive some corollaries and give some examples from the space of bounded linear operators on complex Hilbert space. This one is proved as in [2, Proposition 5].

Corollary 3.3.5. If \(\overline{X} \) is a compact semitopological semigroup with a continuous involution \(t \to t^* \), all idempotents of \(X \), \(EX \) and \(FX \) are selfadjoint, as are \(EF \) and \(e_0 \). If \(x \in K \), then \(x^* \in K \), and furthermore, \(x^*x = e = xx^* \) for every \(x \) in \(K \).

The following corollary was proved in [1, Theorem 4].

Corollary 3.3.6. If \(\overline{X} \) is a compact topological semigroup, then since \(EX \neq B_P \neq FX \), \(E = F \) and hence \(\overline{X} = X \cup \overline{EX} \).

Example 3.3.7. If \(U \) is unitary, and \(T \) and \(S \) are unilateral shifts, let \(J = U \oplus T \oplus S^* \). Then \(J^n = U^n \oplus T^n \oplus (S^*)^n \); let \(X = \langle J, J^* \rangle \). We have \(E = I_1 \oplus O_2 \oplus I_3 \), \(F = I_1 \oplus I_2 \oplus O_3 \), and \(EF = I_1 \oplus O_2 \oplus O_3 \). \(EX \) is the bicyclic semigroup generated by \(U \oplus O_2 \oplus S^* = p \) and \(U^* \oplus O_2 \oplus S = q \) with \(1 = pq = E \), and \(FX \) is the bicyclic semigroup \(\langle U \oplus T \oplus O_3, U^* \oplus T^* \oplus O_3 \rangle \). It is easy to see that the structure of \(EFX \) is totally dependent on \(U \).

Remark 3.3.9. If \(\{J_t\} = J \) is a one-parameter semigroup of partial isometries on a finite-dimensional complex space, then \(J_t = U_t \oplus T_t \), where \(U_t \) is unitary and \(T_t \) is a truncated shift.

Proof. The uniform and weak topologies coincide, so \(\overline{X} = \langle J \cup J^* \rangle \) is a compact topological semigroup. If \(J_t = U_t \oplus S_t \oplus C_t^* \oplus T_t \) where either \(S_t \) or \(C_t \) is a nonunitary isometry, then either \(EX \) or \(FX \) would be bicyclic. Since this cannot happen in a compact topological semigroup, \(S_t \) and \(C_t^* \) are both unitary.

References

DEPARTMENT OF MATHEMATICS, CLARKSON COLLEGE, POTSDAM, NEW YORK 13676