Projective modules over subrings of

Author:
David F. Anderson

Journal:
Trans. Amer. Math. Soc. **240** (1978), 317-328

MSC:
Primary 13C10; Secondary 13F20, 14F05

DOI:
https://doi.org/10.1090/S0002-9947-1978-0485827-5

MathSciNet review:
0485827

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study projective modules over subrings of . Conditions are given for projective modules to decompose into free rank 1 modules. Our main result is that if *k* is an algebraically closed field and *A* a subring of with integral and finite, then all f.g. projective *A*-modules have the form free rank 1. We also give several examples of subrings of which have indecomposable projective modules of rank 2.

**[1]**D. F. Anderson,*Projective modules over subrings of*, Dissertation, Univ. of Chicago, Chicago, Ill., 1976.**[2]**-,*Projective modules over subrings of**generated by monomials*(submitted).**[3]**Hyman Bass,*Algebraic 𝐾-theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0249491****[4]**Mark I. Krusemeyer,*Fundamental groups, algebraic 𝐾-theory, and a problem of Abhyankar*, Invent. Math.**19**(1973), 15–47. MR**335522**, https://doi.org/10.1007/BF01418849**[5]**Hideyuki Matsumura,*Commutative algebra*, W. A. Benjamin, Inc., New York, 1970. MR**0266911****[6]**John Milnor,*Introduction to algebraic 𝐾-theory*, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 72. MR**0349811****[7]**M. Pavaman Murthy,*Vector bundles over affine surfaces birationally equivalent to a ruled surface*, Ann. of Math. (2)**89**(1969), 242–253. MR**241434**, https://doi.org/10.2307/1970667**[8]**M. Pavaman Murthy and Claudio Pedrini,*𝐾₀ and 𝐾₁ of polynomial rings*, Algebraic 𝐾-theory, II: “Classical” algebraic 𝐾-theory and connections with arithmetic (Proc. Conf., Seattle Res. Center, Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 109–121. Lecture Notes in Math., Vol. 342. MR**0376654****[9]**M. Pavaman Murthy and Richard G. Swan,*Vector bundles over affine surfaces*, Invent. Math.**36**(1976), 125–165. MR**439842**, https://doi.org/10.1007/BF01390007**[10]**M. Nagata,*On the closedness of singular loci*, Inst. Hautes Études Sci. Publ. No. 2, (1952), 5-12.**[11]**Claudio Pedrini,*On the 𝐾ₒ of certain polynomial extensions*, Algebraic 𝐾 theory, II: “Classical” algebraic 𝐾-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 92–108. Lecture Notes in Math., Vol. 342. MR**0371882****[12]**P. Samuel,*Lectures on unique factorization domains*, Notes by M. Pavman Murthy. Tata Institute of Fundamental Research Lectures on Mathematics, No. 30, Tata Institute of Fundamental Research, Bombay, 1964. MR**0214579****[13]**J. P. Serre,*Sur les modules projectifs*, Séminaire Dubriel-Pisot**14**(1960-61), No. 2.**[14]**C. S. Seshadri,*Triviality of vector bundles over the affine space 𝐾²*, Proc. Nat. Acad. Sci. U.S.A.**44**(1958), 456–458. MR**102527**, https://doi.org/10.1073/pnas.44.5.456**[15]**R. G. Swan,*Serre's problem, Conference on Commutative Algebra*, Queen's Papers in Pure and Appl. Math., No. 42, Kingston, Ont., 1975.**[16]**Wilberd van der Kallen,*Le 𝐾₂ des nombres duaux*, C. R. Acad. Sci. Paris Sér. A-B**273**(1971), A1204–A1207 (French). MR**291158**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
13C10,
13F20,
14F05

Retrieve articles in all journals with MSC: 13C10, 13F20, 14F05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1978-0485827-5

Article copyright:
© Copyright 1978
American Mathematical Society