The cohomology of semisimple Lie algebras with coefficients in a Verma module
HTML articles powered by AMS MathViewer
- by Floyd L. Williams
- Trans. Amer. Math. Soc. 240 (1978), 115-127
- DOI: https://doi.org/10.1090/S0002-9947-1978-0486012-3
- PDF | Request permission
Abstract:
The structure of the cohomology of a complex semisimple Lie algebra with coefficients in an arbitrary Verma module is completely determined. Because the Verma modules are infinite-dimensional, the cohomology need not vanish (as it does for nontrivial finite-dimensional modules). The methods presented exploit the homological machinery of Cartan-Eilenberg [3]. The results of [3], when applied to the universal enveloping algebra of a semisimple Lie algebra and when coupled with key results of Kostant [12], Hochschild-Serre [9], yield the basic structure theorem-Theorem 4.19. Our results show, incidently, that an assertion of H. Kimura, Theorem 2 of [13] is false. A counterexample is presented in §6.References
- I. N. Bernšteǐn, I. M. Gel’fand and S. I. Gel’fand, The structure of representations generated by highest weight vectors, Funkcional. Anal. i Priložen. 5 (1971), no. 1, 1-9 = Functional Anal. Appl. 5 (1971), 1-8. MR 45 #298.
- Raoul Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203–248. MR 89473, DOI 10.2307/1969996
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Claude Chevalley and Samuel Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85–124. MR 24908, DOI 10.1090/S0002-9947-1948-0024908-8
- Michel Demazure, Une démonstration algébrique d’un théorème de Bott, Invent. Math. 5 (1968), 349–356 (French). MR 229257, DOI 10.1007/BF01389781
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- J. Dixmier, Cohomologie des algèbres de Lie nilpotentes, Acta Sci. Math. (Szeged) 16 (1955), 246–250 (French). MR 74780
- Akira Hattori, On $1$-cohomology groups of infinite dimensional representations of semisimple Lie algebras, J. Math. Soc. Japan 16 (1964), 226–229. MR 181703, DOI 10.2969/jmsj/01630226
- G. Hochschild and J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2) 57 (1953), 591–603. MR 54581, DOI 10.2307/1969740
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 142696, DOI 10.2307/1970237
- Hiroshi Kimura, On some infinite dimensional representations of semi-simple Lie algebras, Nagoya Math. J. 25 (1965), 211–220. MR 181706, DOI 10.1017/S0027763000011545
- Daya-Nand Verma, Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968), 160–166. MR 218417, DOI 10.1090/S0002-9904-1968-11921-4 —, Ph.D. Thesis, Yale Univ., 1966.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 240 (1978), 115-127
- MSC: Primary 17B10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0486012-3
- MathSciNet review: 0486012