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ON THE GROWTH OF SOLUTIONS OF ALGEBRAIC
DIFFERENTIAL EQUATIONS^)

BY

STEVEN B. BANK

Abstract. In this paper we determine estimates for the growth of both

real-valued and complex-valued solutions of algebraic differential equations

on an interval (xn, + oo). One of the main results of the paper (Theorem 3)

confirms E. Borel's conjecture on the growth of real-valued solutions for a

broad class of solutions of second-order algebraic differential equations.

The conjecture had previously been shown to be false for third-order

equations.

1. Introduction. In this paper we investigate the growth of solutions of

algebraic differential equations having polynomial coefficients (i.e. equations

of the form

Q(z,y, /,..., y(w))-0, 0)

where fi is a polynomial in z,y,y',.. . ,y(m) which is not identically zero).

For first-order equations (1), it was shown by Lindelöf [17] that any

real-valued solution on an interval (x0, + oo) is majorized by a function of

the form exp(**) for some constant X. In [7] and [25], Vijayaraghavan and

others proved that second-order equations (1) can possess real-valued

solutions on (0, + co) having arbitrarily rapid growth by showing that for any

preassigned increasing function ip(x) on (0, + oo), it is possible to construct a

real-valued solution y (x) on (0, + oo) of a second-order equation (1) such that

Iy(x)\ > ^(x) at a sequence of x tending to +oo. The examples constructed

in [7] and [25] are of the form (2 - cos(x) - cos(ßx))~' and (P(ax) +

P(ax))/2, respectively, for certain constants a and ß depending on \p(x),

where P(u) is the Weierstrass ¿V-function. In addition, it is easy to see from

the construction in [25] that for a given \p(x), there is a suitable a such that

the function y = P(ax) is a complex-valued solution on (0, +oo) of a

first-order equation (1) for which \y(x)\ > \p(x) at a sequence of x tending to

+ 00. The examples, P(az), (P(az) + P(az))/2, and (2 - cos(z) -

cos(ßz))~x, which were constructed in [7] and [25] are all meromorphic
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functions on the plane of finite order of growth, and thus are quotients of

entire functions of finite order. Using the minimum modulus estimate [20, p.

336] for such entire functions (which arises from the Hadamard factorization

theorem), it is easy to see that in order to achieve arbitrarily rapid growth on

(0, + oo), the constants a and ß above must be chosen so that the solutions

have poles arbitrarily close to the positive real axis (but, of course, no poles

on the positive real axis). One of the main results of Part 1 of this paper

(Theorem 1 below) deals with meromorphic functions y(z) on the plane

which have no poles on (0, + oo) (and which need not be real-valued on (0,

+ oo) nor of finite order of growth on the plane). If y (z) satisfies an equation

(1), then we obtain an estimate for the growth of \y(x)\ on (1, +oo) in terms

of the distance function from x to the set of poles of y, and possibly the

counting function for the number of distinct zeros of y near (0, + oo). Hence

we obtain quantitative information on how close to (0, + oo) the solution y (z)

must have poles in order for \y(x)\ to achieve a preassigned growth on (0,

+ oo). In fact, Theorem 1 applies to any solution having no poles on (0, + oo),

which is defined and meromorphic in a region which for some e > 0 contains

the semi-infinite strip |Im(z)| < e, Re(z) > 0. This result is a corollary of a

general result (see §8) on the growth of solutions of equation (1) which are

defined and analytic on simply-connected regions of the plane. We remark

here that for these results, we require that, if the order of (1) is higher than

two, the solution y (z) not be a solution of some equation Qq = 0, where &q

denotes the homogeneous part of Ü of total degree q in the indeterminates

y,y', • • • ,y(m). The reason for imposing this condition in the case of

equations of order higher than two is that if this condition is violated, then

quantities besides the counting functions for the zeros and poles of the

solution can enter into the estimate for the growth of such a solution, and this

estimate can be extremely complicated. (See [5, pp. 55, 63-65] for a complete

discussion.) Of course, even if this condition is violated, then one can always

find a polynomial Q of degree m which is not a solution of Q = 0 (e.g. see [5,

p. 57]), and one can try to obtain some information on y by applying our

results to the solution v = y - Q of the equation A = 0, where

A = Q(z, v+ Q,v' + Q',..., vim) + QM).

(It is obvious that Aq = 0 has no solutions.) Finally, we remark that the basic

ideas and techniques used in the development of the estimates in Theorems 1

and 2 below had their origins in the author's papers [2] and [6], but in the

present paper these ideas and techniques are improved (see §4) and are made

more general. For example, in [2] and [6], estimates were developed for the

growth of analytic solutions in regions where the zeros of the solution are

"sparse". In the present paper, no such restriction is needed. One reason for

this is a result proved in §6 below which provides an estimate for the growth
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of an arbitrary meromorphic function in the unit disk in terms of the growth

of its logarithmic derivative. (See also §7.)

In Part 2 of the paper, we consider positive, increasing solutions of

second-order equations (1) on an interval (x0, + oo). In [9], E. Borel indicated

a line of reasoning which would show that positive, increasing solutions of

mth order equations (1) on an interval (x0, + oo) are eventually majorized by

expm+,x (where exp^x is the kth iterate of the exponential function).

However, as pointed out by several authors (e.g. Hardy [13], Fowler [12], and

Vijayaraghavan [25]), Borel's proof was clearly incomplete, and, in fact, the

author [6, §14, p. 53] constructed a counterexample in the case of third-order

equations. For arbitrary second-order equations (1), it is not known whether

positive, increasing solutions on (x0 + oo) can have arbitrarily rapid growth,

and it is this difficult question that we investigate in Part 2. (None of the

examples of arbitrarily rapid growing solutions which were constructed by

Vijayaraghavan and others in [7] and [25], and which were discussed earlier,

are increasing.) Fowler [12] considered the special equation y" =

R(x,y)/Q(x,y), where R and Q are polynomials, and his results show that

real-valued solutions on (x0, + oo) of this special equation are eventually

majorized by a function of the form exp(xx). (We mention here that in some

of his results, Fowler permitted R(x,y) and Q(x,y) to be polynomials in y

with coefficients of the form xaf(x~13), where a and ß are rational with

ß > 0, and f(z) is analytic at z = 0.) However, for the general second-order

equation (1), the only general result which is known for positive, increasing

solutions is a result of the author [6, §15, p. 56]. This result states that if y(x)

is a positive solution on (x0, + oo) with the properties that (i) for every a > 0,

y/xa -» + oo as x -» + oo, and (ii) logy(x) is an increasing convex function

of log x, then for some constant X, either y(x) is eventually majorized by

exp(xA) or the function v = xy'/y satisfies v'/v = 0(xx) as x-»+oo

outside a possible exceptional set of finite measure. (It is not known whether

the possible exceptional set can be removed, but if it can, this would

obviously confirm Borel's conjecture for such solutions.) In the present paper

(§13), we take a different approach and prove that for a second-order

equation (1), there is a constant A (which can be calculated directly from the

equation) such that any positive, increasing solution y (x) on (x0, + oo) which

satisfies (a) for every a > 0, y/x" -> + oo as x -> + oo, and (b) x~Ay'/y-*

+ oo as x -» + oo, then also satisfies y (x) < exp2xx for some constant X on an

interval (xx, +oo). (In the case when (1) has constant coefficients, A can

always be taken to be zero.) This confirms Borel's conjecture for positive,

increasing solutions satisfying (a) and (b). In addition, we point out in §14

that the same result holds if, instead of polynomial coefficients, we allow the

coefficients of (1) to lie in a certain type of function field which was
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introduced and investigated by W. Strodt [23]. These fields consist of

functions which are defined and analytic in a region of the form |arg z\ <

0, \z\ > r, and have an asymptotic expansion, as z -» oo in the sector |argz|

< 9, in terms of decreasing real (but not necessarily rational) powers of z.

This allows us to consider coefficients which are more general than those

treated by Fowler (see §15).

We conclude with two remarks. For the reader who is interested in the

growth of real solutions of algebraic difference equations, algebraic

functional equations and differential-difference equations, we refer the reader

to the papers of Cooke [10], [11], Lancaster [16], and Shah [21], [22].

Secondly, the author would like to acknowledge valuable conversations with

his colleague, Robert P. Kaufman.

Part 1. Complex solutions

2. We now state one of our main results. The proof will be completed in

111.

Theorem 1. Let ü(z,y,y',... ,y(m)) be a polynomial in z,y,y',... ,y(m)

which is not identically zero. Let y0(z) be a function which is defined and

meromorphic on a region R, which for some e > 0 contains the strip in the right

half-plane which is bounded by the lines x = 0, y = e, and y = — e. Suppose

that y0(z) has no poles on (0, + oo) and satisfies the equation il = 0 at each

point of analyticity. For each x > 0, let 8(x) denote the minimum of e and the

distance from x to the set of poles in R of y0(z). (If y0 has no poles, set

8(x) = £.) For r > 0, denote by ñx(r) the number of distinct zeros ofy0(z) in

\z\ < r which lie in the region bounded by x = 0 and the curves y = 8(x) and

y = — 8(x). Then there exist positive constants c, and c2, such that if we set

a(x) = cxexpic2fX j±- )   forx> e, (2)

then the following hold:

(a) If m = 1, then \y0(x)\ < exp(a(x))for x > e.

(b) If m > 1, and if for some nonnegative integer q, y0(z) is not a solution of

the equation fi? = 0 (where Qq is the homogeneous part of ß of total degree q in

y,y',...,y(m)),thenforx > e,

\y0(x)\ < exp(a(x)(ñx(a(x)) + \og+a(x))). (3)

(c) If m = 2, and if for some positive integer q for which Qq is not the zero

polynomial, the function y0(z) is a solution ofüq = 0, then for x > e,

\y0(x)\ < exp2(fl(x)(l + {ñx(a(x)))2)). (4)

3. Notation. For 0 < R < + oo, and a meromorphic function g(z) in

\z\ < R, we will use the standard notation for the Nevanlinna   functions
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m(r, g), N(r, g) and T(r, g) introduced in [18, pp. 6, 12]. We will also use the

notation n(r, g) to denote the number of poles (counting multiplicity) of g in

\z\ < r, and we will denote by ñ(r, g) the number of distinct poles of g in

\z\ < r. As in [18, p. 70], we will denote by N(r, g) the function obtained by

replacing n(r, g) by ñ(r, g) in the definition of N(r, g). For an equation (1),

we will denote by Qq the homogeneous part of total degree q in

y,y',... ,y(m). As in [2], we use the abbreviation "n.e. in [0, 1)" (nearly

everywhere in [0, 1)) to mean everywhere in [0, 1) except for a set W such

that jw(l — r)~~x dr < -f-oo. We shall make frequent use of the following

simple fact proved in [3, p. 68]. If f(r) and h(r) are monotone nondecreasing

functions on [0, 1) such that n.e. in [0, l),f(r) < h(r), then there is a positive

constant b, with b < I, such that for all r in [0, 1),

f(r) < h(s(r)),   where s(r) = 1 - b(l - r). (5)

4. We begin with two results which are improvements of [2, §3] and [2, §4],

respectively.

Lemma A. Let it(z,y,'y',... ,y(m)) be a polynomial iny,y',... ,y(m), whose

coefficients are functions of z which are defined and meromorphic in the unit

disk. For each r < 1, let $(/•) be the maximum of the Nevanlinna characteristics

of the coefficients. Let yQ(z) be a meromorphic function in the unit disk which is

not identically zero and which satisfies the equation ñ = 0, but which for some

nonnegative integer q does not satisfy the equation ilq = 0. Then n.e. in [0, 1),

we have as r —> 1,

T(r,y0) = O(Ñ(r,y0) + Ñ(r, l/y0) + $(r) + X(r,y0)), (6)

where

X(r,y0) = log((l + T(r,y0))/(l-r)).

Proof. If o is the maximum integer such that y0 is not a solution of 2„ = 0,

then since y0 satisfies ñ = 0, we have

S Rq(y0(z))<'=0 (7)

where Rq is a polynomial iny'0/y0,... ,yo")/>'o> whose coefficients are those

of tiq, and where Ra ^ 0. Using the elementary rules for calculating with the

Nevanlinna characteristic [18, p. 14], it follows [14, p. 108] that

T(r,y0) < ¿   T(r, Rq) + 0(1)   asr-> 1. (8)
?=0

Now by the Nevanlinna theory [19, p. 256], it follows that m(r,y'0/y0) =

O(X(r,y0)) n.e. in [0, 1) as r -> 1. By induction on j, it thus follows that n.e. in

[0, 1),
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m{r,yP/y0) = O(X(r,y0)), (9)

and

T(r,yjp) = O(T(r,y0) + X(r,y0)). (10)

From (9), we have n.e. in [0,1),

m(r,Rq) = O($(r) + X(r,y0)). (11)

Now it is easily verified that if we set h'0 = y'0/y0, then for eachy, y^Y^o can

be written as a polynomial in w0, w'0,..., wtf~l\ Since N(r,wlJi)) =

0(N(r, wQ)), it follows that

N(r, Rq) = 0(N(r, wQ) + $(/•))     asr^ 1. (12)

Since N(r, w0) = N(r,y0) + N(r, l/y0), the result now follows from (8), (11)

and (12).

5. Lemma B. Let Q(z,y,y',... ,y(m)) be a polynomial in z,y,y',..., y(m).

Let D be a simply-connected region which is not the whole plane, and let g be a

univalent analytic mapping of the unit disk onto D. Let yQ(z) be a meromorphic

function on D which is not identically zero and which satisfies ß = 0, but which

for some nonnegative integer q, does not satisfy the equation Q,q = 0. Then if we

set <p(f ) = yQ(g(t))for |£| < 1, we have n.e. in [0, 1) as r -> 1,

T(r, <p) = 0(N(r, <p) + Ñ (r, l/<p) + X(r, <p)), (13)

where X(r, <p) is as defined in Lemma A.

Proof. Letting/be the inverse of g, it easily follows by induction that for

j > 1 and z in D,

yfP(z) = Í <p(*>(/(z))r,y(/'(^), • • • ./»M). (H)
k=\

where TkJ(ux,... ,uj) is a polynomial in ux,... ,u, with constant

coefficients. If Hx(z),..., Ha(z) are the coefficients of ß, it follows that

<p(f ) is a solution of an algebraic differential equation A(f, <p, <p',..., <p(m))

= 0, where each coefficient <7(f ) is a polynomial (with constant coefficients)

in the variables Hk(g($)), fu\g(0)> where 1 < k < a and 1 < j < m. In

addition, it is clear from (14) that <p is not a solution of Aq = 0. From the

Koebe distortion theorem [15, p. 351] and its consequence [15, Theorem

17.4.7, p. 353], there exist positive constants L„ L2 and c, such that

L2(l-r)<\g'($)\<Lx(l-r)-3, (15)

|*(i)| < c(l - r)-\ (16)

on any circle |£| = r < 1. Since each Hk(z) is a polynomial, clearly
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\Hk(g(!;))\<ck(I-r)-2a*   <m|f|-r,

where ck is a positive constant, and ak is the degree of Hk(z). From (15),

\f(g(n)\<L2x(l-ryx   on|f|-r<l.

From the Cauchy formula for the derivative, applied to wy(£ ) = fu\g(0)

(using the contour \z\ = (1 + |£|)/2), and (15), it easily follows by induction

ony, that there exist constants k¡ > 0 and a} > 0 such that

\ffi(s(t))\<¥l~f)~%   «a|f|-r<l.

It thus follows (using [18, p. 140, (3)]) that for each coefficient G(Ç) in A, we

have

r(r,C7) = 0(log(l/(l-r)))   asr-1,

and hence the result follows from Lemma A.

6. To handle the case of second-order equations completely, we need the

following result.

Lemma C. Lety(z) be any meromorphic function on the unit disk which is not

identically zero, and let w = y'/y. Then there exist positive constants b, K and

Kx, with b < 1, such that if s(r) = I - b(l - r), then for all r in (0, 1),

T(r,y) < K((l - rylN(s(r),y) + exp(Kx*(s(r))j), (17)

where ¥(r) = (1 — r)~x$(r), and where,

$(/■) = log(l/ (1 - r))(T(r, w) + 1) +N(r, w)log+N(r, w).      (18)

Proof. Clearly we can assume wíO. Let [a„) and (bm) be the sequences

of zeros and poles, respectively, of w in the disk (each arranged in order of

increasing moduli). Let 0 < r < R < 1, and let z = re'8 be any point on

\z\ = r which is not a zero or pole of w. Then from the Poisson-Jensen

formula [18, p. 3] it follows that

log|w(z)| < ((R + r)/ (R - r))m(R, w) + J(R, z), (19)

where

^ *2 - bmz

Let rm = \bm\. Clearly if rm < R, then \R2 - bmz\ < 2R since R < I. Hence

if r is not equal to any rm, then

J(R,z)<  2   log(2/|r-rJ). (21)
rm<R

Now from the definition of N(R, w), it easily follows that there is a constant

c, > 0, such that for \ < r < R < 1,

(20)
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n(r, w)<(R- r)~x(N(R, w) + cx). (22)

For the moment, assume that the sequence {bm) is not empty. If this

sequence is infinite, let m0 he an index such that rm > \ for m > m0. If the

sequence {bm) is finite, let m0 he the last index. Now clearly, m < n(rm, w),

so applying (22) with r = rm and R = a(rm), where a(r) = (3r + l)/4, it

easily follows that if we set

—-——-        for am > m0, (23)
t(rm), w) + cx j

then ~2m>mem converges and 0 < em < 16 for m > m0. Now set

«m = em(! - O/18   iorm>m0. (24)

Then it is easily verified that if Ex is the union of all intervals [rm — am, rm +

am] for m > m0, together with the set {\a„\: n > I), then Ex lies in [0, 1) and

dx

"\N(a(

I is finite. (25)

Referring to (21), let r > a(rm^, r g" Ex, and take R = a(r). Then for

m > ffi0, \r - rm\ > am, while for m < m^ \r - rm\ > (1 - rm)/4. Thus

from (21),

J(a(r),z)<c2 + ?l log(2/am), (26)

where c2 is a constant independent of r, and the sum is over all m > m0 for

which rm < a(r). If we set ß(r) = (1 + r)/2, then clearly a(rm) < ß(r) if

rm < a(r). Noting that the sum in (26) has at most n(a(r), w) terms, it

follows easily from (19) (with R = a (/-)), (23), (24) and (26) that there are

positive constants c3 and Rx, with \ < Rx < 1, such that for /?, < r < 1 and

r g. Ex, we have on \z\ = r,

log\w(z)\ < (8/ (1 - r))m(a(r), w) + U(r), (27)

where

U(r) = c3n(a(r), w)(log+N(ß(r), w) + log(l/ (1 - a(r)))).     (28)

(Of course, (27) is valid even if the sequence {i>m} is empty by (9).) If we let E

be the union of Ex and [0, Rx], then clearly E satisfies (25), and if r g E, (27)

is valid on \z\ = r. Now let V(r) denote the right side of (27). Choose e,

0 < « < 1, such that y has no zeros or poles on 0 < \z\ < e. Then clearly for

ï< r< 1,

\N(r,y)\ < (n(r,y)/t) + n(0,y)log 2, (29)

\N(r, l/y)\ < (n(r, l/y)/e) + n(0, l/y)log 2. (30)

By Jensen's formula [19, p. 168], there is a constant X > 0 such that on (0, 1),
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T(r,l/y)=T(r,y) + h(r)   where \h(r)\ < X. (31)

Set

c4 = n(0,y)log 2 + n(0, l/»log 2 + X,

and let

B(r) - \ n(r,y) + (2tt + j )exp( F(r)) + c4. (32)

We now assert that if r belongs to [0, 1) and rg£, then

log+\y(z)\<B(r)   on \z\ = r. (33)

Suppose that (33) fails for a point z0 = re'\ where rg£. Hence log|y(z0)|

> B(r). Let z, = re'9 (where 0O < 0 < 90 + 2ir) be any point on \z\ = r

distinct from z0, and let T be the arc £ = re~''p, where - 0 < <p < - 0O. Since

r & E, clearly y is analytic and nowhere zero on some simply-connected

neighborhood of T, so there exists an analytic branch g of logy on this

neighborhood. Since g' = y'/y = w, we have g(z0) - g(zx) = /rw(f ) ¿/£. It

follows by taking exponentials, and using (27), that log|y(z,)| > B(r) —

2?r(exp V(r)). Clearly, this holds for zx = z0 also, so that (using (32)) it

follows that

m(r,y) > B(r) - 27r(exp(F(r)))   and     m(r, l/y) = 0.        (34)

But by the argument principle and (27) we have n(r, l/y) < n(r, y) +

exp(K(r)). Since m(r, l/y) ■ 0, it then easily follows from (29)-(32) that we

obtain an inequality which is in direct contradiction to the first inequality in

(34), thus proving (33). Hence n.e. in [0, 1), we have m(r,y) < B(r) and thus

T(r,y) < N(r,y) + B(r). Now estimating B(r) using (22) (applied toy and

to w) and then using (5), it follows by a routine calculation that (17) holds.

7. Remark. We observe that the estimate (17) for 7\r,y) involves not only

the growth of y'/y, but also the counting function for the poles of y. (We can

replace this counting function for the poles by the counting function for the

zeros of y by applying Lemma C to l/y instead of y in view of (31).) We

remark here that it is not possible to obtain an estimate for T(r,y) in terms of

the growth of y'/y alone, because it is possible [4, p. 334] to construct

meromorphic functions in the disk which have arbitrarily rapid growth in the

disk, but whose logarithmic derivatives are of finite order in the disk (and, in

fact, of bounded characteristic using a similar construction).

8. Theorem 2. Let ü(z,y,y',... ,y(m)) be a polynomial in z,y,... ,y(m)

which is not identically zero. Let D be a simply-connected region which is not

the whole plane. Let f(z) be any univalent analytic map of D onto the unit disk,

and set L(z) = 1/(1 — |/(z)|). Let y(z) be an analytic function on D which

satisfies the equation Q = 0, and let ñx(r) denote the number of distinct zeros of
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y(z) in D which lie in\z\ < r. Then there exist positive constants K and Kx such

that the following hold on D.

(a) If m = 1, then \y(z)\ < Kxexp(L(z)f.
Ço) If m > 1, and for some nonnegative integer q, the function y (z) is not a

solution of the equation Qq = 0, then,

\y(z)\ < exp\[KL(z)(ax (K(L(z))2) + log+KL(zjj). (35)

(c) If m = 2, and if for some positive integer q for which Qq is not the zero

polynomial, y (z) is a solution of the equation ß? = 0, then

\y(z)\ < exp^tf, (L(z))K (l + («, (Kx (L(z))2))2)). (36)

Proof. Part (a) follows immediately from [1, §2, p. 574]. Let g be the

inverse of/, and set <p(f) =y(g(£)) for |£| < 1. In view of (16), it easily

follows that for 0 < r < 1,

ñ(r, l/<p)<ñx(c(l-r)-2), (37)

and hence, for 0 < r < 1,

Ñ(r, l/<p) < (l/e)Hx(c(l - r)"2), (38)

where e is a constant, 0 < e < 1, such that q> has no zeros on 0 < |£ | < e.

Now assume the hypothesis of part (b). From Lemma B and the fact that

<p is analytic on |f | < 1, it easily follows, using (38), that n.e. in [0, 1),

T(r, <p) = 0(«,(c(l - r)~2) + log(l/ (1 - /•))). (39)

Using the relation between the maximum modulus of q> and T(r, tp) (see [18,

p. 140, (13)]), and then (5), it easily follows (noting that y (z) = <p(/(z))) that

(35) is valid on D, proving part (b).

Now assume the hypothesis of part (c). Then clearly h = y'Jy satisfies a

first-order equation

^HkJ(z)vk(v'y=0, (40)

where the Hkj are polynomials. Set u(l) = h(g(Ç)) for |f| < 1. Then «(f)

satisfies the equation

2^(n(«(0)V(n)y=o, (4i)
where FkJ($) = HkJ(g(S))/(g'(\;)y. Set p = max{k + j: FkJ 5É 0}, and m =

max{j: Fp_jj 5é 0). Using (15) and (16), it is proved in [1, pp. 575-576] that

there exist positive constants K2, K3, q, o and r0, with q > 1 and rQ < 1, such

that on |r| = r < 1, |Fvtf)| < K2(l - r)~q for all (k,j), while \Fp_m,m(S)\ >
*}(! - /•)" if /" > r0. It then follows from [3, §3, p. 63] that there are positive

constants K4 and bx < 1 such that if sx(r) = 1 — bx(l — r), then on [0, 1),
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T(r, u) < K4((l - r)~x + n(sx(r), u) + N(sx(r), «)), (42)

where X = q + o > 1. Now ifjp(£) = y(g(Ç)), then clearly, g>'(£)/?>(£) =

g'(f )«(?)• Hence N(r, u) = A/(r, l/<p) since <p and 1/g' are analytic.

Estimating n(sx(r), u) in (42), in terms of N((l + sx(r))/2, u), using (22), and

estimating T(r, g1) using (15), it easily follows that on [0, 1),

T(r, <p'/<p) <K5(l- /•)"' ((1 - r)-x+1 + Ñ(s2(r), l/<p)),       (43)

where K5> 0 and s2(r) = 1 — b2(l — r), where 0 < b2 < 1. Now using (38),

Lemma C and the analyticity of <p, it follows by routine calculation, that on

[0, 1),

T(r, <p) < K7exp(K6{*(s3(r)))), (44)

where

^(r)<(l-r)-^(l + («1(c1(l-r)-2))2),

and where K, K6, K7 and c, are positive constants and s3(r) = 1 — b3(l — r)

for some positive b3 < I. Converting (44) to an estimate on the maximum

modulus of <p, and noting that y (z) = <p(f(z)), we obtain (36), proving part

(c).

9. Lemma D. Let D be a simply-connected region which is not the whole

plane. Let z0 be a point of D and let f be the univalent analytic mapping of D

onto the unit disk satisfying f(z0) = 0, f'(z0) > 0. For each z in D, let A(z)

denote the distance from z to the boundary of D. Then for all z in D,

where the contour of integration is any path from z0 to z lying in D.

Proof. If we denote the inverse of/by g, then we assert that

U'(g(n)\ < 0 - im/A(g(0)   on |f | < 1. (46)
To prove (46), let o = A(g(f)). Then for |w| < 1, the point g(£) + ow lies

in D, so that H(w) = /(g(f ) + wo) is an analytic function from the disk into

the disk and H(0) = I Let F(u) = (u - Ç)/(l - ¿h), and iP(vv) = F(H(w)).

Then \¡/ maps the disk into the disk and \¡/(0) = 0, so by Schwarz's lemma,

|i//(0)| < 1 from which (46) follows.

Let h(z) denote the analytic branch on D of ¿logftl +/(z))/(l - f(z)))

which vanishes at z0. Then from (46), \h'(z)\ < l/A(z) on D. Since (1 +

f(z))/(l — f(z)) = exp(2h(z)) on D, clearly (45) follows immediately.

10. Lemma E.  Let y = 6(x) be a function on (0, + oo) such that for some
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e > 0, 0 < 8 (x) < e for each x, and which satisfies a Lipschitz condition of the

form \8(xx) — 8(x2)\ < \xx — x2\ for ail positive xx, x2. Let Ds be the region

bounded by the y-axis and the curves y = 8(x) and y = — 8(x)for x > 0. For

each z in Ds, let A(z) denote the distance from z to the boundary of Ds. Then

(a) A(x) > 8(x)/V2 for x > e.
(h)Iffis the univalent analytic mapping of Ds onto the unit disk such that

/(e) = 0,f'(e) > 0, then for x > e,f(x) is a positive increasing function and

nwH^ííw)"0''      (47)
Proof. For part (a), let x > e, and let À, and X2 denote the lines of slope 1

and -1, respectively, through (x, 8(x)). In view of the Lipschitz condition on

5, it is easy to see that the open triangle bounded by A,, X2 and the real axis

lies in Ds. By the symmetry of the region Ds with respect to the real axis, part

(a) now follows easily.

To prove part (b), we observe first that since Ds is symmetric with respect

to the real axis, it follows by the uniqueness part of the Riemann mapping

theorem [20, p. 229] that f(z) = f(z). Thus/is real on (0, +00), and since/'

is nowhere zero, it follows that/'(*) > 0 on (0, + 00). Since/(e) = 0, clearly/

is positive and increasing for x > e, and/(*) < 1 by the maximum modulus

principle. Part (b) now follows immediately from part (a) and Lemma D

using the segment [e, x] as the contour of integration.

11. Proof of Theorem 1. Assume the hypothesis and notation of Theorem

1. It is easy to see that the function 8(x) defined in Theorem 1 satisfies the

hypothesis of Lemma E, and since the solution y0(z) is obviously defined and

analytic on D$, the conclusions of Theorem 1 now follow immediately from

Theorem 2 (applied to Ds) and Lemma E.

12. Remark. If in Theorem 1 the solution y0(z) is a meromorphic function

on the plane whose growth is known, then one can crudely estimate the

quantity «,(/•) since «,(r) < h~(r, l/y0), and the latter quantity can be estimat-

ed from the growth. (E.g., if y0 is of finite order less than X, then by [19, p.

221], n(r, l/yQ) < Xi* for all sufficiently large r.) Of course, h~x(r) can be

much smaller than ñ(r, l/y0), as in the case of y0(z) = exp2z — 1, which

satisfies part (b) of Theorem 1 for am = 2 in the strip x > 0, -1 < y < 1, and

has no zeros in this strip. (Here 8 (x) = 1.)

Part 2. Real solutions

13A. Preliminaries. Suppose we are given a second-order algebraic

differential equation

ü(x,y,y',y") - 2 /«* W/OO'O'")*- 0, (48)
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where we assume that the coefficients fiJk are polynomials. (More general

classes of coefficients will be discussed in §14.)

Set p = max{i + j + k: fijk ̂  0), and let / be the set of all (i,j, k) with

fijk ̂  0 and i + / + k = p. Set A = {j + 2k: for some i, (i,j, k) E I), say A

consists of qx < q2 < • • • < qr, where r > I. For 1 < m < r, let Jm be the

subset of / consisting of those (i,j, k) such that/ + 2k = qm, and let 5m be

the maximum degree of all coefficients/,* where (/,/, k) belongs to Jm. If

r > 1, set

Ax = max{(5m - Sr)/ (qr - qm): I < m < r). (49)

For e > 0, set

Qm (x, e) = 2 {fijk WO + *)"'- (U k) belongs to Jm }. (50)

It is easy to see that there exists e0 > 0 with the property that if 0 < e < Cq,

then the degree in x of the polynomial Qm(x, e) is 8m for all m, 1 < m < r.

Set ß = min{k: for some (i,j),fijk ^ 0} and define X = max{/ +f:fUP ^

0}. Let/, <j2< • • • < js be the set of all/ for which/A_7VJS ^ 0, and let dk

denote the degree of this polynomial for/ =fk. If 5 > 1, set

A2 = max{(¿4 - ds)/(/ -A): 1 < k < s). (51)

With this notation we now prove

13B. Theorem 3. Let A be a real number defined as follows. If r > 1 and

s > 1, set A — max{^l5 A2). If r > 1 and s = I, set A = Ax. If r = I and

s > I, set A = A2. If r — 1 and s = 1, let A be any real number. Then ify(x) is

any positive, increasing solution of (48) on an interval (x0, + oo), having a

continuous second derivative and satisfying the conditions that (i) for every

a > 0,y(x)/xa -» + oo as x -* + oo, and (ii) x~Ay'/y -» + oo as x -» + oo,

then there exist positive constants c and xx such that y(x) < exp2(xc) for

x > xx.

Proof. We will first prove that for any ex > 0, there exists an xx = xx(ex)

such that

y'<yx+'<   on(x„+00). (52)

Choose a fixed number e < e„ with 0 < e < e0 (where e0 is as in §13A)

such that

e<(p-(i+f + k))/2(f + 2k), (53)

if i + j + k <p (wherep is as in §13A) and/ + 2k > 0. To prove (52) it

obviously suffices to prove y ' < yx+e on an interval (xx, + oo).

We assume the contrary. Since the integral /*0ïi(y'/yl+£) dx converges, it

follows that y' < yx+e holds except on a set of finite measure, so by our

assumption and Rolle's theorem (applied to y'/y1+£) it easily follows that on
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a sequence {£„} -» + oo, we have

yy" = (1 + e)(/)2 and y'<yx+t. (54)

Now by isolating the terms in (48) where i +j + k = p, and dividing by yp,

we obtain

2   fijk(y'ly)1(y"/y)k= -*, &)
i+j+k~p

where $ = 2l+J+k<ph0k, and where

V = fuk ( y )'( y ) yi+J+k-p   for /+/ + *</>. (56)

From (53), (54) and (i) of the hypothesis, it follows that for all sufficiently

large n,

IM < IJWfl +*o)k/'+J+k-p)/2   atf„, (57)

and, hence, from (i), it follows that for any a > 0,

$(U = C")   as«->«,. (58)

We consider the polynomial

G(x,v)= 2   Qm(x>e)v""
m=\

(using the notation of §13A). Since G(x, v) is of degree qr and has polynomial

coefficients, it follows now (e.g. from the factorization theorem of W. Strodt

[23, §62]) that there exist d distinct functions Bx(z),..., Bd(z), each defined

and meromorphic in a region |arg z\ < m, \z\ > K, with the following

properties: (A) If Bj(x) ^ 0, then there exist a complex constant Cj and a real

constant a¡ such that Bj(x)/cJxci-*l as x-» +oo; (B) There exists a real

number b such that xb(B¡ — 5,)-»oo if i^j; (C) There exist positive

integers mx,...,md such that am, + • • • + md = qr, and

G (x, v) = Qr (x, e)(v - Bx (*))"" • - - (v - Bd (x))™*, (59)

for all functions v = v(x) on (K, + oo). From (B), it follows that on some

interval [x2, + oo),

\xbB, (x) - xbBj (x)\ > 2   if / * j. (60)

Let us denote the left side of (55) by A(x). Then in view of (54) and §13A,

clearly A(Q = Gtt„,y'(Q/y(0). If we set u„ = tfyXOMU, then since
Qr(x, e) is a nontrivial polynomial in x, it easily follows from (55), (58) and

(59) that for all a > 0,

{u„ - Ufa O,))"" •••(«„- fX(f„)f- o($-a) (61)
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as n -+ oo. If a„ denotes the left side of (61), then for some «0, \a„\ < (1/2)*

for n > n0. Hence for each n > n0, it is clearly impossible for

\un ~ £n5;(£Jl > 2 f°r eacn /' = !»•••♦<*• Thus clearly there is an index f,

1 < t < d, such that \un — £?5,(f„)l < \ holds for infinitely many n, say

«, < n2 <_In view of (60), if k is sufficiently large, then \u„ - !¡!¡Bj(!¡„)\

> 1 for n = nk and all/ ^ t, and hence, from (61), when n = nk, it follows

that for any a > 0, u„ — Ç%Bt(Ç„) = o(Ç„~a) as k -» oo. Thus clearly, for any

a > 0, when aj = nk,

yXSn)/y(S«)-B,(Sn)-o(Sr)   asfc^oo. (62)

If B, =0, this is impossible, since by hypothesis, x~Ay'/y-> +oo as x->

+ oo for some constant A. If B, ^ 0, then clearly r > 1, and the algorithm in

[23, §28, p. 236] (or [24, §2.85, p. 28]) shows that the constant a, in Property

(A), satisfies a, < Ax where Ax is defined by (49). Thus Ç„~ABI(Ç„) tends to a

finite limit as n -» oo, which by (62) would contradict the hypothesis that

x~Ay'/y -» + oo as x -» + oo. This proves (52).

We now assert that for any ex > 0, there is an x3 such that

yy" < (1 + ex)(y'f   on [x3, +oo). (63)

To prove (63), choose £ < e, as in the previous part (i.e. 0 < e < e0 and

satisfying (53)), and we will show that

yy" < (1 + ¿)(y'f   on an interval [x3, + oo). (64)

First, it is clear that it is impossible for yy" > (1 + e)(y')2 to hold on an

interval [x4, -f-oo), for this would imply that y'/yl+e is increasing on [x4,

+ 00) which would contradict y'/yx+e-»0 as x-» +oo from (52). Thus if

(64) were false, then in view of (52), there would be a sequence {£,}-» +oo

at which (54) is valid, and this would lead to the same contradiction as in the

proof of (52). Thus (63) holds.

We now assert that

y" > 0   on an interval [x5, + oo). (65)

To prove (65), we note first that by hypothesis (i), it is impossible that

y" < 0 on an interval [x6, + oo). Hence if we assume that (65) is false, then

the set where y" > 0 certainly contains a union of nonempty disjoint open

intervals (a„, £„), where {£„} -» +oo as n -> oo. Of course, y"(f„) = 0. Now

by definition of ß (see §13A)), we may write (48) in the form

(/')"2 V'(/)V')*_/?=o,
k>ß

and hence

k>ß
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on each interval (an, Ç„). By continuity, this relation must hold at £„ also, and

since y"(Ç„) = 0, we thus have 2///1y'(y')/ = 0 at each f„. Isolating those

terms where i +j = X (see § 13A), and dividing by y\ we obtain

t k-jkJa{y'/y)Jk=- 2 fiJß(y'/y)Jyi+J-x (66)
A:=l i+j<\

at f„. If we choose e > 0 such that e < (X - (i +j))/2j if i +j <X and

j > 0, and apply (52) and (i) of the hypothesis, it easily follows that at £„, the

right side of (66) is o(Ç~a) for any a > 0. We consider the polynomial

s

G(x,v)= 2 fx-AA.ß^,
A-l

and by the Strodt factorization theorem as before, G(x, v) factors as in (59),

where the roots B} have Properties (A) and (B). From (66) it follows as before

that (62) is valid for some index / and a sequence nx < n2 < ..., and this is

impossible as before by the definitions of A and A2. This proves (65).

Returning now to the original equation in the form (55), and choosing

e > 0 satisfying (53), it is clear from (63) (using e, = 1), (65), (52) (applied to

e), and (i) of the hypothesis that for any a > 0, <i>(x) = o(x~a) as x -* +oo.

If we set v0 = y'/y, then (55) can be written

2 Ä^tW)"- -*(*), (67)

where the gmn are polynomials. By [5, p. 57] not all gm„ can be identically zero,

and it is not possible by (67) that g^ be the only nontrivial coefficient. Thus if

we set AJmn = gmn if (am, n) ¥= (0, 0), and h00 = g00 + $(■*)>then vo satisfies the

first-order algebraic differential equation

2/W>m(t/)"=C>, (68)

hmn is a polynomial if (am, m) ̂  (0, 0), h^ differs from a polynomial by a

function o(xa) for all a as x-> +oo, and some hmn with am + n > 0 is

nontrivial. As mentioned in §1, it was shown by Lindelöf [17] (see also [8, pp.

95-97]), that if all hm„ are polynomials, then a real-valued solution v0(x) of

(68) on an interval [x0, + oo) would satisfy

|ü0(*)|<exp(V+'/(* + !))   on [*„+00), (69)

where k can be taken to be d + e for any e > 0, where d is the maximum of

the degrees of the coefficients. It is not difficult to verify that Lindelöfs proof

is valid without any changes for our equation (68), and so (69) is valid for our

v0 (where, in the calculation of k, the "degree" of A«, is taken to be the degree

of goo)- Since v0 = y'/y, the conclusion of Theorem 3 now follows

immediately, where we may take c = d + 1 + e, for any e > 0.
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14. Remark. We now show that Theorem 3 holds for more general classes

of coefficients than polynomials.

Definition [23, §§61, 66-68]. Let 9 be a real number, 0 < 0 < tt, and for

each r > 0, let D(r) consist of all points z in the sector |arg z\ < 9 satisfying

|z| > r. The set of all D(r) for r > 0 is denoted F(9) and is clearly a filter

base which converges to oo. Let L be a set of functions, each meromorphic in

an element of F(9), with the following properties: (i) L is a field (where, as

usual, we identify two elements of L if they agree on an element of F(9)); (ii)

L contains all functions of the form Kz", where K is a complex number and

a is a real number; and (iii) for every element/in L except zero, there exist a

nonzero complex number c and a real number a such that f/cz"->l as

z -> oo in |arg z\ < 9. Then we will call L a Strodt field (briefly, an SF) over

F(9). If f/cz" -» 1, we will denote a by 80(f). For a function g satisfying

g = o(x~N) for each N > 0, as x -» + oo, we will write S0(g) — — oo.

The simplest example of an SF over any F(9) is the field generated by all

the functions Kz" where K is complex and a is real. This field contains the

field of rational functions (and hence the ring of polynomials). A more

extensive SF (see [23, §71.3, p. 247]) is the set of all functions having, in an

element of F(9), a representation u0G(ux,..., us), where í is a positive

integer, G is analytic at (0, 0,..., 0), and u} — Cjz"/ where a¡ < 0 for/ =

1,..., s. This SF clearly contains the coefficients treated by Fowler in [12]

(seefl).
It is not difficult to verify that the statement of Theorem 3 remains true if

the coefficients of equation (48) are assumed to belong to any SF over some

F(9), provided that in the definitions of Ax and A2 (see (49) and (51)), we

replace 8m by the maximum of all 80(fuk), where / + / + k = p and/ + 2k =

qm, and we replace dk by 80(fx_jJß) for j = jk. The Strodt factorization

theorem [23, §62] used in the proof states, in part, that for any algebraic

polynomial with coefficients in an SF over F(9), there exists an SF over F(9)

in which the polynomial factors completely. When (48) has coefficients in an

SF, Lindelöf's proof of (69) for real-valued solutions of (68) is easily seen to

be valid when we take k to be 2(max|50(/zm„)|) + e for any e > 0.
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