## Erickson’s conjecture on the rate of escape of $d$-dimensional random walk

HTML articles powered by AMS MathViewer

- by Harry Kesten PDF
- Trans. Amer. Math. Soc.
**240**(1978), 65-113 Request permission

## Abstract:

We prove a strengthened form of a conjecture of Erickson to the effect that any genuinely*d*-dimensional random walk ${S_n},d \geqslant 3$, goes to infinity at least as fast as a simple random walk or Brownian motion in dimension

*d*. More precisely, if $S_n^\ast$ is a simple random walk and ${B_t}$, a Brownian motion in dimension

*d*, and $\psi :[1,\infty ) \to (0,\infty )$ a function for which ${t^{ - 1/2}}\psi (t) \downarrow 0$, then $\psi {(n)^{ - 1}}|S_n^\ast | \to \infty$ w.p.l, or equivalently, $\psi {(t)^{ - 1}}|{B_t}| \to \infty$ w.p.l, iff $\smallint _1^\infty \psi {(t)^{d - 2}}{t^{ - d/2}} < \infty$; if this is the case, then also $\psi {(n)^{ - 1}}|{S_n}| \to \infty$ w.p.l for

*any*random walk Sn of dimension

*d*.

## References

- K. L. Chung and W. H. J. Fuchs,
*On the distribution of values of sums of random variables*, Mem. Amer. Math. Soc.**6**(1951), 12. MR**40610** - A. Dvoretzky and P. Erdös,
*Some problems on random walk in space*, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley-Los Angeles, Calif., 1951, pp. 353–367. MR**0047272** - H. G. Eggleston,
*Convexity*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 47, Cambridge University Press, New York, 1958. MR**0124813**, DOI 10.1017/CBO9780511566172 - K. Bruce Erickson,
*Recurrence sets of normed random walk in $R^{d}$*, Ann. Probability**4**(1976), no. 5, 802–828. MR**426162**, DOI 10.1214/aop/1176995985 - C. G. Esseen,
*On the Kolmogorov-Rogozin inequality for the concentration function*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**5**(1966), 210–216. MR**205297**, DOI 10.1007/BF00533057 - C. G. Esseen,
*On the concentration function of a sum of independent random variables*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**9**(1968), 290–308. MR**231419**, DOI 10.1007/BF00531753 - W. Hengartner and R. Theodorescu,
*Concentration functions*, Probability and Mathematical Statistics, No. 20, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR**0331448** - Kiyoshi Itô and Henry P. McKean Jr.,
*Diffusion processes and their sample paths*, Die Grundlehren der mathematischen Wissenschaften, Band 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-New York, 1965. MR**0199891** - Harry Kesten,
*The limit points of a normalized random walk*, Ann. Math. Statist.**41**(1970), 1173–1205. MR**266315**, DOI 10.1214/aoms/1177696894
J. V. Uspensky,

*Introduction to mathematical probability*, McGraw-Hill, New York, 1937.

## Additional Information

- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**240**(1978), 65-113 - MSC: Primary 60J15; Secondary 60F15
- DOI: https://doi.org/10.1090/S0002-9947-1978-0489585-X
- MathSciNet review: 489585