Strong differentiability of Lipschitz functions
HTML articles powered by AMS MathViewer
- by C. J. Neugebauer
- Trans. Amer. Math. Soc. 240 (1978), 295-306
- DOI: https://doi.org/10.1090/S0002-9947-1978-0489599-X
- PDF | Request permission
Abstract:
Let F be a differentiation basis in ${R^n}$, i.e., a family of measurable sets S contracting to 0 such that ${\left \| {{M_F}f} \right \|_p} \leqslant {A_p}{\left \| f \right \|_p}$, where ${M_F}$ is the Hardy-Littlewood maximal operator. For $f \in \Lambda _\alpha ^{pq}$, we let ${E_F}(f)$ be the complement of the Lebesgue set of f relative to F, and we show that ${E_F}$ has $L_\alpha ^{pq}$-capacity 0, where $L_\alpha ^{pq}$ is a capacity associated with $\Lambda _\alpha ^{pq}$ in much the same way as the Bessel capacity ${B_{\alpha p}}$ is associated with $L_\alpha ^p$.References
- A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225. MR 136849, DOI 10.4064/sm-20-2-181-225
- Daniel J. Deignan and William P. Ziemer, Strong differentiability properties of Bessel potentials, Trans. Amer. Math. Soc. 225 (1977), 113–122. MR 422645, DOI 10.1090/S0002-9947-1977-0422645-7 M. deGuzmán, Differentiation of integrals in ${R^n}$, Lecture Notes in Math., no. 481, Springer-Verlag, Berlin and New York, 1975.
- Norman G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255–292 (1971). MR 277741, DOI 10.7146/math.scand.a-10981
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Mitchell H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean $n$-space. I. Principal properties, J. Math. Mech. 13 (1964), 407–479. MR 0163159 S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fund. Math. 22 (1934), 257-261.
- N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385–475 (English, with French summary). MR 143935, DOI 10.5802/aif.116
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 240 (1978), 295-306
- MSC: Primary 26A16; Secondary 46E35
- DOI: https://doi.org/10.1090/S0002-9947-1978-0489599-X
- MathSciNet review: 489599