Paracompactness of box products of compact spaces
HTML articles powered by AMS MathViewer
- by Kenneth Kunen
- Trans. Amer. Math. Soc. 240 (1978), 307-316
- DOI: https://doi.org/10.1090/S0002-9947-1978-0514975-6
- PDF | Request permission
Abstract:
We consider box products of countably many compact Hausdorff spaces. Under the continuum hypothesis, the product is paracompact iff its Lindelöf degree is no more than the continuum; in particular, the product is paracompact if each space has weight continuum or less, or if each space is dispersed. Some partial results are proved under Martin’s axiom.References
- A. V. Arhangel′skiĭ, The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR 187 (1969), 967–970 (Russian). MR 0251695
- Eric K. van Douwen, The box product of countably many metrizable spaces need not be normal, Fund. Math. 88 (1975), no. 2, 127–132. MR 385781, DOI 10.4064/fm-88-2-127-132
- Eric K. van Douwen, Another nonnormal box product, General Topology and Appl. 7 (1977), no. 1, 71–76. MR 436061, DOI 10.1016/0016-660X(77)90009-5 —, Separation and covering properties of box products and products (to appear).
- Thomas J. Jech, Lectures in set theory, with particular emphasis on the method of forcing, Lecture Notes in Mathematics, Vol. 217, Springer-Verlag, Berlin-New York, 1971. MR 0321738, DOI 10.1007/BFb0061131
- C. J. Knight, Box topologies, Quart. J. Math. Oxford Ser. (2) 15 (1964), 41–54. MR 160184, DOI 10.1093/qmath/15.1.41
- K. Kunen, Some comments on box products, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vols. I, II, III, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 1011–1016. MR 0394538
- Ernest Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831–838. MR 56905, DOI 10.1090/S0002-9939-1953-0056905-8
- E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822–828. MR 87079, DOI 10.1090/S0002-9939-1957-0087079-9
- R. Pol, Short proofs of two theorems on cardinality of topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1245–1249 (English, with Russian summary). MR 383333
- Mary Ellen Rudin, The box product of countably many compact metric spaces, General Topology and Appl. 2 (1972), 293–298. MR 324619, DOI 10.1016/0016-660X(72)90022-0
- Mary Ellen Rudin, Countable box products of ordinals, Trans. Amer. Math. Soc. 192 (1974), 121–128. MR 340022, DOI 10.1090/S0002-9947-1974-0340022-1
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 240 (1978), 307-316
- MSC: Primary 54B10; Secondary 02K25, 54D20
- DOI: https://doi.org/10.1090/S0002-9947-1978-0514975-6
- MathSciNet review: 0514975