On the growth of the integral means of subharmonic functions of order less than one
HTML articles powered by AMS MathViewer
- by Faruk F. Abi-Khuzam
- Trans. Amer. Math. Soc. 241 (1978), 239-252
- DOI: https://doi.org/10.1090/S0002-9947-1978-0481002-9
- PDF | Request permission
Abstract:
Let u be a subharmonic function of order $\lambda (0 < \lambda < 1)$, and let ${m_s}(r,u) = {\left \{ {(1/2\pi )\int _{ - \pi }^\pi {{{\left | {u(r{e^{i\theta }})} \right |}^s}} d\theta } \right \}^{1/s}}$. We compare the growth of ${m_s}(r,u)$ with that of the Riesz mass of u as measured by $N (r,u) = (1/2\pi )\int _{ - \pi }^\pi {u(r{e^{i\theta }})d\theta }$. A typical result of this paper states that the following inequality is sharp: \begin{equation} \tag {$\ast $} \underset {x\to \infty }{\lim \inf } \frac {{{m}_{s}}\left ( r, u \right )}{N\left ( r, u \right )} \leqslant {{m}_{s}}\left ( {{\psi }_{\lambda }} \right )\end{equation} where $\psi _\lambda (\theta ) = (\pi \lambda /\sin \lambda )\cos \lambda \theta$. The case $s = 1$ is due to Edrei and Fuchs, the case $s = 2$ is due to Miles and Shea and the case $s = \infty$ is due to Valiron.References
- Faruk F. Abi-Khuzam, An Abelian theorem for a class of subharmonic functions, Proc. Amer. Math. Soc. 67 (1977), no. 2, 253–259. MR 460667, DOI 10.1090/S0002-9939-1977-0460667-6
- Albert Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. 133 (1974), 139–169. MR 417406, DOI 10.1007/BF02392144
- Albert Edrei, The deficiencies of meromorphic functions of finite lower order, Duke Math. J. 31 (1964), 1–21. MR 158079
- Albert Edrei and Wolfgang H. J. Fuchs, On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc. 93 (1959), 292–328. MR 109887, DOI 10.1090/S0002-9947-1959-0109887-4
- Albert Edrei and Wolfgang H. J. Fuchs, The deficiencies of meromorphic functions of order less than one, Duke Math. J. 27 (1960), 233–249. MR 123717
- I. V. Ostrovskiĭ, Certain asymptotic properties of entire functions with real negative zeros, Zap. Meh.-Mat. Fak. i Har′kov. Mat. Obšč. (4) 28 (1961), 23–32 (Russian). MR 0249620 G. H. Hardy and J. E. Littlewood, Notes on the theory of series. (XIX): A problem concerning majorants of Fourier series, Quart J. Math. Oxford 6 (1935), 304-315.
- Simon Hellerstein and Jack Williamson, Entire functions with negative zeros and a problem of R. Nevanlinna, J. Analyse Math. 22 (1969), 233–267. MR 247087, DOI 10.1007/BF02786792
- B. Ja. Levin, Distribution of zeros of entire functions, American Mathematical Society, Providence, R.I., 1964. MR 0156975, DOI 10.1090/mmono/005
- Joseph Miles and Daniel F. Shea, An extremal problem in value-distribution theory, Quart. J. Math. Oxford Ser. (2) 24 (1973), 377–383. MR 324041, DOI 10.1093/qmath/24.1.377 R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions meromorphes, Gauthier-Villars, Paris, 1930. I. I. Privaloff, Sur la généralisation d’une formule de Jensen, Bull. Acad. Sciences URSS (1935), 837-847. (Russian)
- I. P. Proskurnja, The growth of meromorphic functions of infinite lower order, Dokl. Akad. Nauk SSSR 209 (1973), 558–561 (Russian). MR 0324042 G. Valiron, Sur un théorème de M. Wiman, Opuscula math. A. Wiman dedicara (1930), 1-12.
- W. K. Hayman, Subharmonic functions in $R^{m}$, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 601–605. MR 0425143
- Ronald Gariepy and John L. Lewis, Space analogues of some theorems for subharmonic and meromorphic functions, Ark. Mat. 13 (1975), 91–105. MR 374452, DOI 10.1007/BF02386199
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 241 (1978), 239-252
- MSC: Primary 30A64; Secondary 31A05
- DOI: https://doi.org/10.1090/S0002-9947-1978-0481002-9
- MathSciNet review: 0481002