Ultrafilter invariants in topological spaces
HTML articles powered by AMS MathViewer
- by Victor Saks
- Trans. Amer. Math. Soc. 241 (1978), 79-97
- DOI: https://doi.org/10.1090/S0002-9947-1978-0492291-9
- PDF | Request permission
Abstract:
Let $\mathfrak {m} \geqslant {\aleph _0}$ and $X = \prod \nolimits _{i \in I} {{X_i}}$. Then X is $[{\aleph _0}, \mathfrak {m}]$-compact if and only if $\prod \nolimits _{i \in J} {{X_i}}$ is $[{\aleph _0}, \mathfrak {m}]$-compact for all $J \subset I$ with $|J| \leqslant {2^{{2^\mathfrak {m}}}}$. Let $\mathfrak {m} \geq {\aleph _0}$, $({x_\xi }: \xi < \mathfrak {m})$ a net in X, $p \in X$, and $\mathcal {D} \in \beta (\mathfrak {m})$. Then $p = \mathcal {D} - {\lim _{\xi < \mathfrak {m}}} {x_\xi }$ if $\{ \xi < \mathfrak {m}: {x_\xi } \in U \} \in \mathcal {D}$ for every neighborhood U of p. Every topological space is characterized by its $\mathcal {D}$-limits. Several topological properties are described using ultrafilter invariants, including compactness and perfect maps. If X is a Hausdorff space and D is a discrete space equipotent with a dense subset of X, then X is a continuous perfect image of a subspace of $\beta D$ which contains D if and only if X is regular.References
- C. E. Aull, A certain class of topological spaces, Prace Mat. 11 (1967), 49–53. MR 0227914 P. Alexandroff and P. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam 14 (1929), 1-96.
- Allen R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1969/70), 185–193. MR 251697, DOI 10.4064/fm-66-2-185-193
- David Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970/71), no. 1, 1–24. MR 277371, DOI 10.1016/0003-4843(70)90005-7
- Andreas Blass, The Rudin-Keisler ordering of $P$-points, Trans. Amer. Math. Soc. 179 (1973), 145–166. MR 354350, DOI 10.1090/S0002-9947-1973-0354350-6
- Nicolas Bourbaki, Éléments de mathématique. Fasc. II. Livre III: Topologie générale. Chapitre 1: Structures topologiques. Chapitre 2: Structures uniformes, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1142, Hermann, Paris, 1965 (French). Quatrième édition. MR 0244924 N. Bourbaki and J. Dieudonné, Note de la teratopologie. II, Rev. Scientifique 77 (1939), 180-181.
- W. W. Comfort, A nonpseudocompact product space whose finite subproducts are pseudocompact, Math. Ann. 170 (1967), 41–44. MR 210070, DOI 10.1007/BF01362285
- W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Die Grundlehren der mathematischen Wissenschaften, Band 211, Springer-Verlag, New York-Heidelberg, 1974. MR 0396267, DOI 10.1007/978-3-642-65780-1
- W. W. Comfort and Victor Saks, Countably compact groups and finest totally bounded topologies, Pacific J. Math. 49 (1973), 33–44. MR 372104, DOI 10.2140/pjm.1973.49.33
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- R. Engelking, Outline of general topology, North-Holland Publishing Co., Amsterdam; PWN—Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York, 1968. Translated from the Polish by K. Sieklucki. MR 0230273
- Zdeněk Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87–91. MR 203676, DOI 10.1090/S0002-9904-1967-11653-7
- Z. Frolík, On the topoligical product of paracompact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 747–750 (English, with Russian summary). MR 125559
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- John Ginsburg and Victor Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), no. 2, 403–418. MR 380736, DOI 10.2140/pjm.1975.57.403
- Stephen H. Hechler, On some weakly compact spaces and their products, General Topology and Appl. 5 (1975), 83–93. MR 370500, DOI 10.1016/0016-660X(75)90014-8
- Melvin Henriksen and J. R. Isbell, Some properties of compactifications, Duke Math. J. 25 (1958), 83–105. MR 96196 K. Kunen, manuscript.
- Kenneth Kunen, Some points in $\beta N$, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 3, 385–398. MR 427070, DOI 10.1017/S0305004100053032
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144 A. Miščenko, Finally compact spaces, Soviet Math. J. 3 (1962), 1199-1202.
- Paul R. Meyer, Sequential space methods in general topological spaces, Colloq. Math. 22 (1971), 223–228. MR 278258, DOI 10.4064/cm-22-2-223-228
- M. Rajagopalan and R. Grant Woods, Products of sequentially compact spaces and the $V$-process, Trans. Amer. Math. Soc. 232 (1977), 245–253. MR 451219, DOI 10.1090/S0002-9947-1977-0451219-7 V. Saks, Countably compact groups, doctoral dissertation, Wesleyan University, 1972. —, Una demostracioń nueva del teorema de Tikonov, Bol. Mat. Costarricense (to appear).
- Yu. M. Smirnov, On topological spaces compact in a given interval of powers, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 155–178 (Russian). MR 0035004 V. Saks, Ultrafilter invariants in topological spaces; abstract, Notices Amer. Math. Soc. 22 (1975), A-218. V. Saks, Perfect functions, Notices Amer. Math. Soc. 25 (1978), A-138.
- Victor Saks and R. M. Stephenson Jr., Products of ${\mathfrak {m}}$-compact spaces, Proc. Amer. Math. Soc. 28 (1971), 279–288. MR 273570, DOI 10.1090/S0002-9939-1971-0273570-6
- C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131–147. MR 203679, DOI 10.1090/S0002-9947-1966-0203679-7
- A. K. Steiner and E. F. Steiner, Relative types of points in $\beta N-N$, Trans. Amer. Math. Soc. 160 (1971), 279–286. MR 336708, DOI 10.1090/S0002-9947-1971-0336708-2
- R. M. Stephenson Jr. and J. E. Vaughan, Products of initially $m$-compact spaces, Trans. Amer. Math. Soc. 196 (1974), 177–189. MR 425898, DOI 10.1090/S0002-9947-1974-0425898-1
- J. E. Vaughan, Some properties related to $[{\mathfrak {a}},\,{\mathfrak {b}}]$-compactness, Fund. Math. 87 (1975), no. 3, 251–260. MR 380732, DOI 10.4064/fm-87-3-251-260
- J. E. Vaughan, Product spaces with compactness-like properties, Duke Math. J. 39 (1972), 611–617. MR 313985, DOI 10.1215/S0012-7094-72-03966-X —, Products of perfectly normal sequentially compact spaces (to appear).
- Russell C. Walker, The Stone-Čech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, New York-Berlin, 1974. MR 0380698, DOI 10.1007/978-3-642-61935-9
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 241 (1978), 79-97
- MSC: Primary 54A20; Secondary 54A25, 54D20
- DOI: https://doi.org/10.1090/S0002-9947-1978-0492291-9
- MathSciNet review: 492291