THE PRODUCT OF NONPLANAR COMPLEXES
DOES NOT IMBED IN 4-SPACE

BY
BRIAN R. UMMEL

Abstract. We prove that if K_1 and K_2 are nonplanar simplicial complexes,
then $K_1 \times K_2$ does not imbed in \mathbb{R}^4.

In this paper a proof is given of the following theorem:

Theorem P. If K_1 and K_2 are finite simplicial complexes neither of which is
homeomorphic to a subset of the euclidean plane \mathbb{R}^2, then their cartesian product
$K_1 \times K_2$ is not homeomorphic to any subset of euclidean 4-space \mathbb{R}^4.

This result answers a question originally posed by Professor Karl Menger in [5]. I wish to thank Professor Joseph Zaks for showing me this problem.

1. Preliminaries. We say a space X imbeds in euclidean n-space \mathbb{R}^n if there
is an imbedding (i.e., homeomorphism into) $f: X \to \mathbb{R}^n$. If X imbeds in \mathbb{R}^2 we
say that X is planar. For a proof of the following see [4]:

Proposition 1.1. If K is a finite nonplanar simplicial complex then K
contains a subspace homeomorphic to one of the following spaces:

a. K_5, the complete graph on 5 vertices (or, if you prefer, the 1-skeleton of a
4-simplex);
b. $K_{3,3}$, the join of 2 3-point sets;
c. S^2, the 2-sphere; or
d. $Q^2 = \{ x \in \mathbb{R}^3 : x_3 = 0 \text{ and } x_1^2 + x_2^2 < 1 \text{ or } x_1 = x_2 = 0 \text{ and } 0 < x_3 < 1 \}$.

We will henceforth assume that the complexes K_1 and K_2 of Theorem P are
chosen from the list of Proposition 1.1, and that we have chosen imbeddings
$f_1: K_1 \to \mathbb{R}^3$ and $f_2: K_2 \to \mathbb{R}^3$.

To clarify notations we recall some standard definitions. Let $\pi = \{1, \tau\}$ be
the multiplicative group of order 2. A π-space X is a Hausdorff space together
with a fixed point free involution $\tau: X \to X$; this involution defines a free
\(\pi\)-action on \(X\) and we denote the orbit space of this action by \(X/\pi\). The natural projection \(p: X \to X/\pi\) is then a 2-fold covering. If \(X\) and \(Y\) are \(\pi\)-spaces then a map \(f: X \to Y\) is \(\pi\)-equivariant if \(f \cdot \tau = \tau \cdot f\). Homotopies are equivariant if they are \(\pi\)-equivariant at each stage. If \(K\) is a Hausdorff space, the deleted product of \(K\) is

\[D_2K = \{(x,y) \in K \times K : x \neq y\} .\]

Using the action \(\tau(x,y) = (y,x)\), \(D_2K\) is a \(\pi\)-space and we denote the orbit space by \(\Sigma_2K\). Let \(S^\infty = \text{proj lim } S^n\) under the natural inclusions and \(\tau: S^\infty \to S^\infty\) be the limit of the antipodal maps; set \(P^\infty = S^\infty/\tau\). If \(K\) is paracompact there is a \(\pi\)-equivariant map \(\hat{k}: D_2K \to S^\infty\) and any two such maps are \(\pi\)-equivariantly homotopic (cf. [2]). Using the induced map \(k: \Sigma_2K \to P^\infty\) and singular cohomology with \(Z_2\) coefficients we define the \(n\)th mod-2 imbedding class of \(K\) by

\[\Phi^\infty_2(K) = k^*(w^n) \in H^n(\Sigma_2K; Z_2)\]

where \(w^n\) is the nonzero element of \(H^n(P^\infty; Z_2)\), \(n > 0\). The following is an immediate consequence of the definition.

Proposition 1.2.

a. If \(K\) and \(L\) are paracompact, \(f: K \to L\) is an imbedding, and \(F: \Sigma_2K \to \Sigma_2L\) is the induced map, then \(F^*(\Phi^\infty_2(L)) = \Phi^\infty_2(K)\).

b. For \(n > 0\), \(D_2\mathbb{R}^n\) is \(\pi\)-equivariantly homotopy equivalent to \(S^{n-1}\) (with antipodal action); thus \(\Phi^\infty_2(\mathbb{R}^n) \neq 0\) iff \(0 < i < n - 1\).

Thus \(\Phi^\infty_2(K) = 0\) is a necessary condition for a paracompact space to imbed in \(\mathbb{R}^n\). In §3 we prove Theorem P by showing that \(\Phi^\infty_2(K_1 \times K_2) \neq 0\).

The information we need about the deleted products of \(K_1\) and \(K_2\) is summarized in the following:

Proposition 1.3. If \(K\) is one of the four complexes \(K_1^1, K_3^1, S^2\) or \(Q^2\) of Proposition 1.1, then

a. \(\Phi^\infty_2(K) \neq 0\);

b. \(D_2K\) is \(\pi\)-equivariantly homotopy equivalent to a closed 2-manifold of genus \(g\), where \(g = 6\) if \(K = K_1^1\), \(g = 4\) if \(K = K_3^1\) and \(g = 0\) if \(K = S^2\) or \(Q^2\);

c. if \(f: K \to \mathbb{R}^3\) is an imbedding and \(\hat{F}: D_2K \to D_2\mathbb{R}^3\) is the induced map, then \(\hat{F}^*: H^2(D_2\mathbb{R}^3) \to H^2(D_2K)\) is an isomorphism.

Proof. For a and b see [7] and [8]. For c we have the following commutative diagram whose rows are exact Gysin sequences (where we interpret a 2-fold covering as a 0-sphere bundle cf. [6]):

\[
\begin{align*}
\text{\(D_2K\)} & \quad \xrightarrow{p} \quad \text{\(H^2(\Sigma_2K)\)} \\
\downarrow \hat{F}^* & \quad \downarrow \hat{F}^* \\
\text{\(H^2(D_2K)\)} & \quad \xrightarrow{p} \quad \text{\(H^2(\Sigma_2K)\)} \\
\end{align*}
\]

\[
\begin{align*}
\text{\(H^2(D_2\mathbb{R}^3)\)} & \quad \xrightarrow{p} \quad \text{\(H^2(D_2K)\)} \\
\downarrow F^* & \quad \downarrow F^* \\
\text{\(H^2(\Sigma_2\mathbb{R}^3)\)} & \quad \xrightarrow{p} \quad \text{\(H^2(\Sigma_2K)\)} \\
\end{align*}
\]

\[\to 0\]
THE PRODUCT OF NONPLANAR COMPLEXES

where $F: \Sigma_2 K \to \Sigma_2 \mathbb{R}^3$ is the map induced by \hat{F}. All six groups in the diagram are isomorphic to \mathbb{Z}_2 and so ρ and ρ' are isomorphisms. Thus \hat{F}^* is an isomorphism.

Using $[g_1, \ldots, g_n]$ to denote the \mathbb{Z}_2-module with basis $\{g_1, \ldots, g_n\}$ or the zero module if $n = 0$, we can write

$$H^0(K_1) = [\omega^0], \quad H^0(K_2) = [\mu^0],$$

$$H^1(K_1) = [\omega_1, \ldots, \omega_n], \quad H^1(K_2) = [\mu_1, \ldots, \mu_n],$$

where η or σ is 0, 0, 4, or 6 depending upon whether K_1 or K_2 is S^2, Q^2, $K_{1,3}$, or K_2. Here the superscripts denote dimension rather than exponents. If K_1 or K_2 is S^2 or Q^2 we denote $H^2(K_1) = [\omega^2] \{H^2(K_2) = [\mu^2]\}$; otherwise $H^2(K_1) = 0 \{H^2(K_2) = 0\}$. We also need to assume that if $\eta \neq 0 \{\sigma \neq 0\}$ then the above basis for $H^1(K_1)$ \{H^1(K_2)\} is dual to a basis which satisfies the following:

Lemma 1.4. If K is a finite 1-dimensional simplicial complex and $i: D_2K \to K \times K$ is the inclusion map, then there is a basis $\{\beta_1, \ldots, \beta_m\}$ for $H_1(K)$ such that if $\beta \in H_2(D_2K)$ then $i_*(\beta) = \sum c_{ij}(\beta_i \times \beta_j)$ where $c_{ij} \in \mathbb{Z}_2$, $c_{ii} = 0$ for $i = 1, \ldots, m$ and "\times" denotes cross product.

Proof. Let $D_2^\theta(K) = \{(x_1, x_2) \in K \times K: c(x_1) \cap c(x_2) = \emptyset\}$ where $c(x_j)$ is the smallest closed simplex of K containing x_j. Then, by [9], $D_2^\theta(K)$ is a strong π-equivariant deformation retract of D_2K, and so we can use the inclusion $j: D_2^\theta K \to K \times K$ instead of i. Let $\{\sigma_1, \ldots, \sigma_{m+n}\}$ be the 1-simplices of K numbered so that $\{\sigma_{m+1}, \ldots, \sigma_{m+n}\}$ form a maximal tree T of K. We also use σ_i to denote the linear singular 1-simplex whose image is σ_i; there is no orientation problem since we are using \mathbb{Z}_2 coefficients. For $i = 1, \ldots, m$ set $\beta_i = [\sigma_i + \lambda_i] \in H_1(K_1)$ where λ_i is a sum of simplices of T. For $i > m$ we set $\lambda_i = \sigma_i$. Suppose $\beta \in H_2(D_2^\theta K)$. Then $\beta = \sum k_{ij}(\sigma_i \times \sigma_j)$ where $k_{ij} \in \mathbb{Z}_2$ and $k_{ii} = 0$ for all i. We have

$$\sigma_i \times \sigma_j = (\sigma_i + \lambda_i - \lambda_j) \times (\sigma_j + \lambda_j - \lambda_i)$$

$$= (\sigma_i \times \lambda_i) \times (\sigma_j \times \lambda_j) - \lambda_i \times \sigma_j - \sigma_i \times \lambda + \lambda_i + \lambda_j.$$

So if $i \neq j$, $\sigma_i \times \sigma_j = (\sigma_i + \lambda_i) + \gamma_{ij}$ where γ_{ij} is a 2-chain of $X \times \Gamma$ \{H_2(K) \times \Gamma \times \Gamma\}. So $\beta = \sum k_{ij}(\sigma_i + \lambda_i) \times (\sigma_j + \lambda_j) \pm \gamma$ where γ is a 2-chain of $\Gamma \times \time
by [8] $D_2(CK)$ is π-equivariantly homotopy equivalent to S^2. So in the exact sequence (cf. [1])

$$
\rightarrow H^n(D_2CK) \rightarrow H^n(K) \oplus H^n(K) \xrightarrow{\alpha} H^n(D_2K) \rightarrow H^{n+1}(D_2CK) \rightarrow
$$

where $\alpha(u, v) = q_1^*(u) + q_2^*(v)$, $q_i: D_2K \rightarrow K$ given by $q_i(x_1, x_2) = x_i$, we have α is an isomorphism if $n = 1$. Using this and the Künneth Theorem proves Lemma 1.5.

Using Lemma 1.5, Proposition 1.5 and the above bases we have:

$$
H^0(D_2K_1) = \{\omega^0 \times \omega^0\}, \quad H^1(D_2K_1) = \{\omega^0 \times \omega^1, \omega^1 \times \omega^0; i = 1, \ldots, \eta\},
$$

and

$$
H^2(D_2K_1) = \{\Omega^2\},
$$

and

$$
H^0(D_2K_2) = \{\mu^0 \times \mu^0\}, \quad H^1(D_2K_2) = \{\mu^0 \times \mu^1, \mu^1 \times \mu^0; i = 1, \ldots, \sigma\},
$$

$$
H^2(D_2K_2) = \{\Lambda^2\}
$$

where "\times" denotes cross product followed by restriction.

For Hausdorff spaces K and L we define

$$
\hat{J}_0(K, L) = D_2K \times D_2L, \quad \hat{J}_1(K, L) = D_2K \times (L \times L),
$$

$$
\hat{J}_2(K, L) = (K \times K) \times D_2L.
$$

Using $\tau(x_1, x_2, y_1, y_2) = (x_2, x_1, y_2, y_1)$, $\hat{J}_k(K, L)$ becomes a π-space and we denote the quotient spaces by $J_k(K, L)$ for $k = 0, 1, 2$.

Lemma 1.6. If K and L are Hausdorff spaces then $D_2(K \times L)$ is π-equivariantly homeomorphic to $\hat{J}_1(K, L) \cup \hat{J}_2(K, L)$. Moreover, $\{J_1(K, L), J_2(K, L)\}$ is an excisive couple and $J_1(K, L) \cap J_2(K, L) = J_0(K, L)$.

Proof. Clearly $\phi: D_2(K \times L) \rightarrow \hat{J}_1(K, L) \cup \hat{J}_2(K, L)$ defined by

$$
\phi(x_1, y_1, x_2, y_2) = (x_1, x_2, y_1, y_2)
$$

is a π-equivariant homeomorphism. Since $J_1(K, L)$ and $J_2(K, L)$ are open in their union, the couple is excisive.

For $k = 0, 1, 2$ let

$$
\hat{J}_k = \hat{J}_k(K_1, K_2), \quad \hat{J}'_k = \hat{J}_k(\mathbb{R}^3; \mathbb{R}^3),
$$

$$
J_k = J_k(K_1, K_2), \quad J'_k = J_k(\mathbb{R}^3; \mathbb{R}^3),
$$

and $\hat{F}: \hat{J}_k \rightarrow J_k$, $F_k: J_k \rightarrow J'_k$ denote the maps induced by the imbeddings f_j: $K_j \rightarrow \mathbb{R}^3, j = 1, 2$. We also have maps

$$
\hat{F}: D_2(K_1 \times K_2) \rightarrow D_2(\mathbb{R}^3 \times \mathbb{R}^3)
$$

and

$$
F: \Sigma_2(K_1 \times K_2) \rightarrow \Sigma_2(\mathbb{R}^3 \times \mathbb{R}^3).$$
Finally let \(\tilde{i}_k: J_0 \rightarrow \tilde{J}_k \) and \(i_k: J_0 \rightarrow J_k \) be the inclusions for \(k = 1, 2 \) and \(p_k: \tilde{J}_k \rightarrow J_k, p_k': \tilde{J}_k' \rightarrow J_k' \) be the natural projections for \(j = 0, 1, 2 \).

Lemma 1.7. \(F_0^*: H^4(J_0) \rightarrow H^4(J'_0) \) is an isomorphism.

Proof. \(\tilde{J}'_0 \) and \(\tilde{J}_0 \) are \(\pi \)-equivariantly homotopy equivalent to closed 4-manifolds; hence \(J_0 \) and \(J_0' \) are homotopy equivalent to closed 4-manifolds. Thus in the commutative diagram

\[
\begin{array}{ccc}
H^4(\tilde{J}'_0) & \xrightarrow{\rho'} & H^4(J_0) \\
\downarrow F_0 & & \downarrow F_0 \\
H^4(\tilde{J}_0) & \xrightarrow{\rho} & H^4(J_0)
\end{array}
\]

where \(\rho' \) and \(\rho \) are from the appropriate Gysin sequences, and Proposition 1.3.c, \(F_0^* \) is an isomorphism. This proves Lemma 1.7.

2. The spectral sequence of a double covering. The proof of Theorem P requires the following in which we use the notation of §1.

Lemma 2.1. \(\text{Ker}(p_1^*: H^4(J_1) \rightarrow H^4(J'_1)) \subseteq \text{Im}(i_1^*: H^4(J_1) \rightarrow H^4(J_0)) \).

The proof of Lemma 2.1 requires using the cohomology spectral sequence of a covering (cf. [3]) specialized to the case of a double covering which allows explicit identification of the \(E_1 \)-term and the \(E_1 \) differential operators. The properties of this spectral sequence are summarized in the following:

Proposition 2.2. If \(X \) is a \(\pi \)-space, there is a natural first quadrant \(E_1 \)-spectral sequence \(\{ E^{p,q}_r(X), d^{p,q}_r \}_{r=1} \) convergent to \(H^*(X/\pi; Z_2) \) with the following properties:

a. \(E^{p,q}_1(X) = H^q(X; Z_2) \),

b. \(d^{p,q}_r: E^{p,q}_r(X) \rightarrow E^{p+1,q}_r(X) \) is given by \(d^{p,q}_1(\alpha) = \alpha + \tau \alpha \) where \(\tau: H^1(H; Z_2) = H^1(X, Z_2) \) is the homomorphism induced by the involution \(\tau: X \rightarrow X \).

c. For each \(n \) there is a natural decreasing filtration \(\{ F_p H^n(X/n) \}_{p=0}^{\infty} \) of \(H^n(X/\pi; Z_2) \) such that \(F_0 H^n(X/\pi; Z_2) \rightarrow F_n H^n(X/\pi; Z_2) = 0 \) and for each \(p > 0 \) there is a natural short exact sequence

\[
0 \rightarrow F_{p+1} H^n(X/\pi) \rightarrow F_p H^n(X/\pi) \xrightarrow{q} E^n_{\infty,p} (X) \rightarrow 0.
\]

d. The projection induced map \(p^*: H^n(X/\pi; Z_2) \rightarrow H^n(X; Z_2) \) is the composition:

\[
H^n(X/\pi) = F_0 H^n(X/\pi) \xrightarrow{q} E^n_{\infty,0} (X) \subseteq E_1^{0,n} (X) = H^*(X).
\]

For the remainder of this section and the next we assume all coefficients to be \(Z_2 \) and suppress this in the notation.
Lemma 2.3. If \(p > 1 \) then \(d_{31}^{\mathfrak{2}}: E_3^{p,2}(D_2K_1) \to E_3^{p+3,0}(D_2K_1) \) is an isomorphism with \(E_3^{p,2}(D_2K_1) = [\Omega^2] \).

Proof. Using the calculations of §1 and Proposition 2.2.b,
\[
E^p_0(D_2K_1) = [\omega^0 \times \omega^0], \quad p > 0, \quad E^p_1(D_2K_1) = 0, \quad p > 1,
\]
\[
E_3^{p,2}(D_2K_1) = [\Omega^2], \quad p > 0.
\]
Thus \(E_3^{p,0}(D_2K_1) = E_3^{p,0}(D_2K_1) = [\omega^0 \times \omega^0] \) if \(p > 3 \) and \(E_3^{p,2}(D_2K_1) = E_3^{p,2}(D_2K_1) = [\Omega^2] \) if \(p > 0 \). Since \(H^n(\Sigma_2K_1) = 0 \) if \(n > 2 \),
\[
d_{31}^{\mathfrak{2}}: E_3^{p,2}(D_2K_1) \to E_3^{p+3,0}(D_2K_1)
\]
must be an isomorphism. This proves Lemma 2.3.

Lemma 2.4. \(E_{\infty,4}^{p-q}(\hat{J}_0) = 0 \) if \(p > 3 \).

Proof. Using the calculations of §1 and the Künneth formula,
\[
H^0(\hat{J}_0) = [\omega^0 \times \omega^0] \otimes [\mu^0 \times \mu^0],
\]
\[
H^1(\hat{J}_0) = [\omega^0 \times \omega^0] \otimes [\mu^1 \times \mu^0, \mu^0 \times \mu^1; i = 1, \ldots, \sigma] \oplus [\omega^1 \times \omega^0, \omega^0 \times \omega^1; i = 1, \ldots, \eta] \otimes [\mu^0 \times \mu^0],
\]
where \(\eta \) and \(\sigma \) are the ranks of \(H^1(K_1) \) and \(H^1(K_2) \) respectively. Using the diagonal \(\tau \)-action and Proposition 2.2.b
\[
E_2^{p,0}(\hat{J}_0) = [\omega^0 \times \omega^0] \otimes [\mu^0 \times \mu^0], \quad E_2^{p,1}(\hat{J}_0) = 0 \quad \text{if} \quad p > 0.
\]
Since \(E_2^{p,1}(\hat{J}_0) = 0, E_3^{4,0}(\hat{J}_0) = E_2^{4,0}(\hat{J}_0) \) and
\[
\pi_1^\tau: E_3^{4,0}(D_2K_1) \to E_3^{4,0}(\hat{J}_0)
\]
is an isomorphism where \(\pi_1^\tau: \hat{J}_0 \to D_2K_1 \) is the projection. From the commutative diagram
\[
\begin{array}{ccc}
E_3^{1,2}(D_2K_1) & \xrightarrow{\pi_1^\tau} & E_3^{1,2}(\hat{J}_0) \\
d_{31}^{2} \downarrow & & \downarrow d_{31}^{2} \\
E_3^{4,0}(D_2K_1) & \xrightarrow{\pi_1^\tau} & E_3^{4,0}(\hat{J}_0)
\end{array}
\]
and Lemma 2.3, \(d_{31}^{2}: E_3^{1,2}(\hat{J}_0) \to E_3^{4,0}(\hat{J}_0) \) is surjective. Thus \(E_\infty^{4,0}(\hat{J}_0) = E_4^{4,0}(\hat{J}_0) = E_3^{4,0}(\hat{J}_0) = 0 \). From above, \(E_\infty^{3,1}(\hat{J}_0) = 0 \). This proves Lemma 2.4.

Lemma 2.5. \(E_\infty^{3,1}(\hat{J}_1) = 0 \) and \(i^*: E_\infty^{2,2}(\hat{J}_0) \) is the zero homomorphism.

Proof. We first compute \(E_\infty^{p,q}(\hat{J}_1) \) in 3-cases. If \(K_2 = K_3^1 \) or \(K_3^1 \), then
$H^1(\hat{\mathcal{J}}_1) = [\omega^0 \times \omega^0] \otimes [\mu^0 \times \mu^1, \mu^1 \times \mu^0; i = 1, \ldots, \sigma]$
\[\oplus [\omega^0 \times \omega^0, \omega^1 \times \omega^0; i = 1, \ldots, \eta] \otimes [\mu^0 \times \mu^0],\]

$H^2(\hat{\mathcal{J}}_1) = [\omega^0 \times \omega^0] \otimes [\mu^1 \times \mu^1; i, j = 1, \ldots, \sigma]$
\[\oplus [\omega^0 \times \omega^1, \omega^1 \times \omega^0; i = 1, \ldots, \eta] \otimes [\mu^0 \times \mu^0; i = 1, \ldots, \sigma] \oplus [\Omega^2] \otimes [\mu^0 \times \mu^0].\]

Using the diagonal π-action on $\hat{\mathcal{J}}_1$ and Proposition 2.2

$E^2_{p,1}(\hat{\mathcal{J}}_1) = 0$ if $p > 0,$

$E^2_{2,2}(\hat{\mathcal{J}}_1) = [\omega^0 \times \omega^0] \otimes [\mu^1 \times \mu^1; i = 1, \ldots, \sigma] \oplus [\Omega^2] \otimes [\mu^0 \times \mu^0],$

$E^2_{1,3}(\hat{\mathcal{J}}_1) = 0.$

If $K_2 = S^2$ and we set $H_2(K_2) = [\mu^2]$ then

$H^1(\hat{\mathcal{J}}_1) = [\omega^0 \times \omega^0, \omega^1 \times \omega^0; i = 1, \ldots, \eta] \otimes [\mu^0 \times \mu^0],$

$H^2(\hat{\mathcal{J}}_1) = [\omega^0 \times \omega^0] \otimes [\mu^0 \times \mu^2, \mu^2 \times \mu^0] \oplus [\Omega^2] \otimes [\mu^0 \times \mu^0].$

Therefore

$E^2_{p,1}(\hat{\mathcal{J}}_1) = 0$ if $p > 0,$ $E^2_{2,2}(\hat{\mathcal{J}}_1) = [\Omega^2 \times \mu^0 \times \mu^0],$

$E^2_{1,3}(\hat{\mathcal{J}}_1) = 0.$

Finally if $K_2 = Q_2,$ then

$E^2_{p,1}(\hat{\mathcal{J}}_1) = 0$ if $p > 0,$ $E^2_{2,2}(\hat{\mathcal{J}}_1) = H^2(\hat{\mathcal{J}}_1) = [\Omega^2 \times \mu^0 \times \mu^0],$

$E^2_{1,3}(\hat{\mathcal{J}}_1) = H^3(\hat{\mathcal{J}}_1) = 0.$

In all cases $E^2_{p,0}(\hat{\mathcal{J}}_1) = [\omega^0 \times \omega^0 \times \mu^0 \times \mu^0].$ Since $\pi_i^*: H^1(D_2K_1) \rightarrow H^2(\hat{\mathcal{J}}_1)$ is an isomorphism, where $\pi_i: \hat{\mathcal{J}}_1 \rightarrow D_2K_1$ is the projection, and $E^2_{p,1}(\hat{\mathcal{J}}_1) = 0$ if $p > 0,$ we have

$\pi_i^*: E^p_{3,0}(D_2K_1) \rightarrow E^p_{3,0}(\hat{\mathcal{J}}_1)$

is an isomorphism for $p > 2.$ Consider the commutative diagram

$E^2_{2,2}(D_2K_1) \xrightarrow{\pi^*} E^2_{3,2}(\hat{\mathcal{J}}_1)$

$\downarrow d^2_{2,2} \quad \downarrow d^2_{3,2}$

$E^3_{p,0}(D_2K_1) \xrightarrow{\pi^*} E^3_{3,0}(\hat{\mathcal{J}}_1)$

Using Lemma 2.3, and $\pi_i^*([\Omega^2]) = [\Omega^2 \times \omega^0 \times \omega^0]$ we have

$d^2_{3,2}([\Omega^2 \times \omega^0 \times \omega^0]) \neq 0.$
Therefore

\[E^{2,2}_4(\hat{J}_1) = \begin{cases}
[\omega^0 \times \omega^0 \times \mu^1_i \times \mu^1_i; i = 1, \ldots, \sigma] & \text{if } K_2 = K_3 \text{ or } K_{2,3}, \\
0 & \text{if } K_2 = S^2 \text{ or } Q^2.
\end{cases} \]

To show that \(i^*[\omega^0 \times \omega^0 \times \mu^1_i \times \mu^1_i] = 0 \), let \(\{\alpha_1, \ldots, \alpha_\sigma\} \) be the basis of \(H_1(K_2) \) dual to \(\{\mu^1_i, \ldots, \mu^1_i\} \) as in Lemma 1.4 and let \(\alpha^2 \) denote the nonzero element of \(H^2(D_2K_2) \). If \(j: D_2K_2 \to K_2 \times K_2 \) is the inclusion, then by Lemma 1.4

\[\langle j^*(\mu^1_i \times \mu^1_i), \alpha^2 \rangle = \langle \mu^1_i \times \mu^1_i, \sum_{j \neq k} c_{jk}(\alpha^1_j \times \alpha^1_k) \rangle = \sum_{j \neq k} c_{jk} \langle \mu^1_i, \alpha^1_j \rangle \langle \mu^1_i, \alpha^1_k \rangle = \sum_{j \neq k} c_{jk} \delta_{jk} = 0. \]

Thus \(j^*(\mu^1_i \times \mu^1_i) = 0 \). So \(i^*[\omega^0 \times \omega^0 \times \mu^1_i \times \mu^1_i] = 0 \). This proves Lemma 2.5.

Proof of Lemma 2.1. By Proposition 2.2.d, if \(p_1: \hat{J}_1 \to J_1 \) is the natural projection then \(p_1^*: H^4(J_1) \to H^4(\hat{J}_1) \) is the composition

\[H^4(J_1) = F^0H^4(J) \to E_0^{0,4}(\hat{J}_1) \subseteq E_1^{0,4}(\hat{J}_1) = H^4(J_1). \]

So using Proposition 2.2.c we have

\[\ker[p_1^*: H^4(J_1) \to H^4(\hat{J}_1)] = \ker[q: F^0H^4(J_1) \to E_0^{0,4}(\hat{J}_1)] = F_1H^4(J_1). \]

By Lemma 2.5, \(E_\infty^{1,3}(\hat{J}_1) = 0 \); thus \(F_2H^4(J_1) = F_1H^4(J_1) \). Thus \(i_1^*[\ker p_1^*] = 0 \) if and only if \(i_1^*[F_2H^4(J_1)] = 0 \). Now consider the following commutative diagram with exact rows:

\[
\begin{array}{c}
0 \to F_3H^4(J_1) \to F_2H^4(J_1) \to E_{\infty}^{2,2}(\hat{J}_1) \to 0 \\
\downarrow i_1^* \quad \downarrow i_1^* \quad \downarrow i_1^* \\
0 \to F_3H^4(J_0) \to F_2H^4(J_0) \to E_{\infty}^{2,2}(\hat{J}_0) \to 0
\end{array}
\]

By Lemma 2.4, \(E_\infty^{4,1}(\hat{J}_0) = 0 \); thus \(F_3H^4(J_0) = 0 \) and so the projection

\[F_2H^4(J_0) \to E_{\infty}^{2,2}(\hat{J}_0) \]

is an isomorphism. But by Lemma 2.5, \(i_1^*: E_{\infty}^{2,2}(\hat{J}_1) \to E_{\infty}^{2,2}(\hat{J}_0) \) is zero. Thus \(i_1^*: F_2H^4(J_1) \to F_2H^4(J_0) \) is zero. This proves Lemma 2.1.

3. Proof of Theorem P. We use the notation of §1 including the assumptions that \(K_1 \) and \(K_2 \) are complexes selected from the list in Proposition 1.1 and that all coefficients are \(\mathbb{Z}_2 \). We will prove that \(\Phi_2(K_1 \times K_2) \neq 0 \).

Consider first the following commutative diagram in which the rows are the
exact Mayer Vietoris sequences given by Lemma 1.6:

\[H^3(J'_1) \oplus H^3(J'_2) \to H^4(J'_0) \xrightarrow{\delta'^*} H^4(\Sigma_2(\mathbb{R}^3 \times \mathbb{R}^3)) \to H^4(J'_1) \oplus H^4(J'_2) \]

\[F'_0 \downarrow \quad F'^* \]

\[H^3(J'_1) \oplus H^3(J'_2) \xrightarrow{\delta'^*} H^4(J'_0) \xrightarrow{\delta'^*} H^4(\Sigma_2(\mathbb{K}_1 \times \mathbb{K}_2)) \]

Since \(H^j(J'_1) \approx H^j(J'_2) \approx H^j(\mathbb{R}P^2) = 0 \) for \(j > 2 \), \(\delta'^* \) is an isomorphism.

Since \(\Phi'_2(\mathbb{K}_1 \times \mathbb{K}_2) \neq 0 \) if \(F^* \neq 0 \), we have \(\Phi'_2(\mathbb{K}_1 \times \mathbb{K}_2) \neq 0 \) if \(\text{Im}(F'_0) \subsetneq \text{Im}(i'_1 + i'_2) \).

Now consider the following commutative diagram in which the rows are exact Gysin sequences or sums of Gysin sequences:

\[
\begin{array}{cccccc}
H^3(J'_0) & \xrightarrow{\Delta'^*} & H^4(J'_0) & \xrightarrow{F'_0*} & H^4(J'_0) & \xrightarrow{p'} \to H^4(J'_0) \\
F'_0 & \downarrow & F'_0 & \downarrow & F'_0 & \downarrow \\
H^3(J'_0) & \xrightarrow{\Delta^*} & H^4(J'_0) & \xrightarrow{P'_0*} & H^4(J'_0) & \xrightarrow{p} \to H^4(J'_0) \\
& & i'_1 + i'_2 & \xrightarrow{i'_1 + i'_2} & & \hat{i}'_1 + \hat{i}'_2 \\
& & & \xrightarrow{\Delta'_1 + \Delta'_2} & & \\
H^3(J'_1) \oplus H^3(J'_2) & \xrightarrow{\Delta^*} & H^4(J'_1) \oplus H^4(J'_2) & \xrightarrow{P'_1 \oplus P'_2} & H^4(J'_1) \oplus H^4(J'_2) \\
& & & & \end{array}
\]

Since \(\hat{J}'_0 \) is \(\pi \)-equivariantly homotopy equivalent to \(S^2 \times S^2 \), \(H^4(\hat{J}'_0) \approx H^4(J'_0) \approx H^3(J'_0) = \mathbb{Z}_2 \) and \(\Delta'^* \) and \(\rho' \) are isomorphisms. By Proposition 1.3, \(H^4(\hat{J}'_0) \approx H^4(J'_0) \approx \mathbb{Z}_2 \) and by exactness \(\rho \) is an isomorphism. By Lemma 1.7, \(F'_0* : H^4(\hat{J}'_0) \to H^4(J'_0) \) is an isomorphism. Let \(\alpha \) be the nonzero element of \(H^3(J'_0) \). We need to show there do not exist elements \(\alpha_1 \in H^3(J'_1) \) and \(\alpha_2 \in H^3(J'_2) \) such that \(i'_1(\alpha_1) + i'_2(\alpha_2) = F'_0* (\alpha) \). Since \(F'_0* (\Delta'^* (\alpha)) \neq 0 \), it suffices to show that

\[i'_1 (\Delta'_1 (\alpha_1)) + i'_2 (\Delta'_2 (\alpha_2)) = 0. \]

By exactness and symmetry this follows if we prove

\[\ker [p'_1 : H^4(J'_1) \to H^4(\hat{J}'_1)] \subseteq \ker [i'_1 : H^4(J'_1) \to H^4(J'_0)]. \]

This is exactly what was proven in Lemma 2.1. Thus the proof of Theorem P is complete.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MILWAUKEE, WISCONSIN 53201

Current address: Applied Mathematics Group, Energy Technology Applications Division, Boeing Computer Services Company, P.O. Box 24346, Seattle, Washington 98124