Pullback de Rham cohomology of the free path fibration
HTML articles powered by AMS MathViewer
- by Kuo-Tsai Chen
- Trans. Amer. Math. Soc. 242 (1978), 307-318
- DOI: https://doi.org/10.1090/S0002-9947-1978-0478190-7
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 250 (1979), 398-398.
Abstract:
Let M and N be smooth manifolds and let $\bar B (A)$ be the reduced bar construction on the de Rham complex $\Lambda (M)$ or a suitable subcomplex A of M. For every smooth map $f:N \to M \times M$, the tensor product $\Lambda (N) \otimes \bar B(A)$, equipped with a suitable differential, will yield the correct cohomology for the pullback of the free path fibration $P(M) \to M \times M$ via the smooth map F. Moreover, $\Lambda (N) \otimes \bar B(A)$ can be taken as a de Rham subcomplex of the pullback space.References
- Kuo-tsai Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. (2) 97 (1973), 217–246. MR 380859, DOI 10.2307/1970846
- Kuo Tsai Chen, Reduced bar constructions on de Rham complexes, Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976, pp. 19–32. MR 0413151
- Kuo Tsai Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), no. 5, 831–879. MR 454968, DOI 10.1090/S0002-9904-1977-14320-6
- Samuel Eilenberg and John C. Moore, Homology and fibrations. I. Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1966), 199–236. MR 203730, DOI 10.1007/BF02564371
- V. K. A. M. Gugenheim, On the multiplicative structure of the de Rham theory, J. Differential Geometry 11 (1976), no. 2, 309–314. MR 418083 —, On the multiplicative structure of the de Rham cohomology of induced fibrations (preprint).
- Larry Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58–93. MR 216504, DOI 10.1090/S0002-9947-1967-0216504-6 D. Sullivan, Differential forms and topology of manifolds, Conferences on Manifolds, Tokyo, 1973. —, Infinitesimal computations in topology (preprint).
- Wen Tsün Wu, Theory of $I^*$-functor in algebraic topology—real topology of fiber squares, Sci. Sinica 18 (1975), no. 4, 464–482. MR 645386 U.S. Halperin, Lectures on minimal models, Université des Sciences et Techniques de Lille. I, 1977.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 242 (1978), 307-318
- MSC: Primary 58A10; Secondary 55D99, 58A99
- DOI: https://doi.org/10.1090/S0002-9947-1978-0478190-7
- MathSciNet review: 0478190