Sampling theorems for nonstationary random processes
HTML articles powered by AMS MathViewer
- by Alan J. Lee
- Trans. Amer. Math. Soc. 242 (1978), 225-241
- DOI: https://doi.org/10.1090/S0002-9947-1978-0482995-6
- PDF | Request permission
Abstract:
Consider a second order stochastic process $\{ X(t),t \in \textbf {R}\}$, and let $H(X)$ be the Hilbert space generated by the random variables of the process. The process is said to be linearly determined by its samples $\{ X(nh),n \in \textbf {Z}\}$ if the random variables $X(nh)$ generate $H(X)$. In this paper we give a sufficient condition for a wide class of nonstationary processes to be determined by their samples, and present sampling theorems for such processes. We also consider similar problems for harmonizable processes indexed by LCA groups having suitable subgroups.References
- Moshe Zakai, Band-limited functions and the sampling theorem, Information and Control 8 (1965), 143–158. MR 174403, DOI 10.1016/S0019-9958(65)90038-0 Z. A. Piranashvili, On the problem of interpolation of stochastic processes, Theor. Probability Appl. 12 (1967), 647-657.
- Alan J. Lee, On band limited stochastic processes, SIAM J. Appl. Math. 30 (1976), no. 2, 269–277. MR 401319, DOI 10.1137/0130028
- Alan J. Lee, Characterization of bandlimited functions and processes, Information and Control 31 (1976), no. 3, 258–271. MR 405573, DOI 10.1016/S0019-9958(76)90409-5
- S. P. Lloyd, A sampling theorem for stationary (wide sense) stochastic processes, Trans. Amer. Math. Soc. 92 (1959), 1–12. MR 107301, DOI 10.1090/S0002-9947-1959-0107301-6
- M. M. Rao, Inference in stochastic processes. III. Nonlinear prediction, filtering, and samlping theorems, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8 (1967), 49–72. MR 216713, DOI 10.1007/BF00533944
- Stamatis Cambanis and Elias Masry, On the representation of weakly continuous stochastic processes, Information Sci. 3 (1971), 277–290; erratum, ibid. 4 (1972), 289–290. MR 0305477, DOI 10.1016/s0020-0255(71)80011-7
- Emanuel Parzen, An appproach to time series analysis, Ann. Math. Statist. 32 (1961), 951–989. MR 143315, DOI 10.1214/aoms/1177704840
- A. H. Zemanian, Distribution theory and transform analysis. An introduction to generalized functions, with applications, McGraw-Hill Book Co., New York-Toronto-London-Sydney, 1965. MR 0177293
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Stamatis Cambanis and Bede Liu, On harmonizable stochastic processes, Information and Control 17 (1970), 183–202. MR 282401, DOI 10.1016/S0019-9958(70)90541-3 E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. 1, Springer-Verlag, Berlin and New York, 1963. MR 28 # 158.
- R. A. Mayer, Summation of Fourier series on compact groups, Amer. J. Math. 89 (1967), 661–692. MR 218492, DOI 10.2307/2373239
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 242 (1978), 225-241
- MSC: Primary 60G99; Secondary 42A68, 94A05
- DOI: https://doi.org/10.1090/S0002-9947-1978-0482995-6
- MathSciNet review: 0482995