The asymptotic behaviour of certain integral functions
HTML articles powered by AMS MathViewer
- by P. C. Fenton
- Trans. Amer. Math. Soc. 242 (1978), 123-140
- DOI: https://doi.org/10.1090/S0002-9947-1978-0486507-2
- PDF | Request permission
Abstract:
Let$f(z)$ be an integral function satisfying \[ {\int _{}^\infty \{\log m(r,f) - \cos \pi \rho \log M(r,f)\} ^ + }\frac {{dr}}{{{r^{\rho + 1}}}} < \infty \] and \[ 0 < \lim \limits _{\overline {r \to \infty } } \frac {{\log M(r,f)}}{{{r^\rho }}} < \infty \] for some $\rho : 0 < \rho < 1$. It is shown that such functions have regular asymptotic behaviour outside a set of circles with centres ${\zeta _i}$ and radii ${t_i}$ for which \[ \sum \limits _{i = 1}^\infty {\frac {{{t_i}}}{{\left | {{\zeta _i}} \right |}}} < \infty \].References
- J. M. Anderson, Asymptotic properties of integral functions of genus zero, Quart. J. Math. Oxford Ser. (2) 16 (1965), 151–165. MR 179357, DOI 10.1093/qmath/16.2.151 V. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an n-dimensional cone, Amer. Math. Soc. Transl. (2) 80 (1969), 119-138.
- M. L. Cartwright, Integral functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 44, Cambridge, at the University Press, 1956. MR 0077622
- Matts Essén, A generalization of the Ahlfors-Heins theorem, Trans. Amer. Math. Soc. 142 (1969), 331–344. MR 249652, DOI 10.1090/S0002-9947-1969-0249652-7
- Matts Essén and John L. Lewis, The generalized Ahlfors-Heins theorem in certain $d$-dimensional cones, Math. Scand. 33 (1973), 113–129. MR 348131, DOI 10.7146/math.scand.a-11477
- P. C. Fenton, The distribution of the Riesz mass of certain subharmonic functions, Ark. Mat. 14 (1976), no. 2, 259–276. MR 440051, DOI 10.1007/BF02385840
- W. K. Hayman, Slowly growing integral and subharmonic functions, Comment. Math. Helv. 34 (1960), 75–84. MR 111839, DOI 10.1007/BF02565929
- Bo Kjellberg, On the minimum modulus of entire functions of lower order less than one, Math. Scand. 8 (1960), 189–197. MR 125967, DOI 10.7146/math.scand.a-10608
- T. A. Kolomiĭceva, The asymptotic behavior of an entire function with regular zero distribution, Teor. Funkciĭ Funkcional. Anal. i Priložen. 15 (1972), 35–43 (Russian). MR 0310244
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027, DOI 10.1007/978-3-642-65183-0 E. C. Titchmarsh, On integral functions with real negative zeros, Proc. London Math. Soc. (2) 26 (1927), 185-200. —, The theory of functions, Oxford Univ. Press, London and New York, 1939.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 242 (1978), 123-140
- MSC: Primary 30A64
- DOI: https://doi.org/10.1090/S0002-9947-1978-0486507-2
- MathSciNet review: 0486507