Interpretation of the $p$-adic log gamma function and Euler constants using the Bernoulli measure
HTML articles powered by AMS MathViewer
- by Neal Koblitz
- Trans. Amer. Math. Soc. 242 (1978), 261-269
- DOI: https://doi.org/10.1090/S0002-9947-1978-0491622-3
- PDF | Request permission
Abstract:
A regularized version of J. Diamondâs p-adic log gamma function and his p-adic Euler constants are represented as integrals using B. Mazurâs p-adic Bernoulli measure.References
- Emil Artin, The gamma function, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York-Toronto-London, 1964. Translated by Michael Butler. MR 0165148
- Daniel Barsky, Introduction Ă lâanalyse $p$-adique, SĂ©minaire Delange-Pisot-Poitou (14e annĂ©e: 1972/73), ThĂ©orie des nombres, Fasc. 2, SecrĂ©tariat MathĂ©matique, Paris, 1973, pp. Exp. No. G2, 2 (French). MR 0389832
- Jack Diamond, The $p$-adic log gamma function and $p$-adic Euler constants, Trans. Amer. Math. Soc. 233 (1977), 321â337. MR 498503, DOI 10.1090/S0002-9947-1977-0498503-9 â, On the values of p-adic L-functions at positive integers (to appear).
- Kenkichi Iwasawa, Lectures on $p$-adic $L$-functions, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0360526, DOI 10.1515/9781400881703
- Neal Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, Graduate Texts in Mathematics, Vol. 58, Springer-Verlag, New York-Heidelberg, 1977. MR 0466081, DOI 10.1007/978-1-4684-0047-2
- M. Krasner, Rapport sur le prolongement analytique dans les corps valuĂ©s complets par la mĂ©thode des Ă©lĂ©ments analytiques quasi-connexes, Table Ronde dâAnalyse Non ArchimĂ©dienne (Paris, 1972) Bull. Soc. Math. France, MĂ©m. No. 39-40, Soc. Math. France, Paris, 1974, pp. 131â254 (French). MR 0385168, DOI 10.24033/msmf.166 T. Kubota and H. LeopĂČldt, Eine p-adische Theorie der Zetawerte. I, J. Reine Angew. Math. 214/215 (1965), 328-339. B. Mazur, Analyse p-adique, special Bourbaki redaction.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 242 (1978), 261-269
- MSC: Primary 12B40; Secondary 12B30
- DOI: https://doi.org/10.1090/S0002-9947-1978-0491622-3
- MathSciNet review: 0491622