$R$-separable coordinates for three-dimensional complex Riemannian spaces
HTML articles powered by AMS MathViewer
- by C. P. Boyer, E. G. Kalnins and Willard Miller
- Trans. Amer. Math. Soc. 242 (1978), 355-376
- DOI: https://doi.org/10.1090/S0002-9947-1978-0496814-5
- PDF | Request permission
Abstract:
We classify all R-separable coordinate systems for the equations $\Sigma _{i,j = 1}^3 {g^{ - 1/2}}{\partial _j}({g^{1/2}}{g^{ij}}{\partial _i}\psi ) = 0$ and $\Sigma _{i,j = 1}^3 {{g^{ij}}{\partial _i}W{\partial _j}W = 0}$ with special emphasis on nonorthogonal coordinates, and give a group-theoretic interpretation of the results. We show that for flat space the two equations separate in exactly the same coordinate systems.References
- Luther Pfahler Eisenhart, Stackel systems in conformal Euclidean space, Ann. of Math. (2) 36 (1935), no.Β 1, 57β70. MR 1503208, DOI 10.2307/1968664
- E. G. Kalnins and W. Miller Jr., Lie theory and separation of variables. IX. Orthogonal $R$-separable coordinate systems for the wave equation $\psi _{tt}-D_{2}\psi =0$, J. Mathematical Phys. 17 (1976), no.Β 3, 331β355. MR 404523, DOI 10.1063/1.522900
- E. G. Kalnins and W. Miller Jr., Lie theory and separation of variables. IX. Orthogonal $R$-separable coordinate systems for the wave equation $\psi _{tt}-D_{2}\psi =0$, J. Mathematical Phys. 17 (1976), no.Β 3, 331β355. MR 404523, DOI 10.1063/1.522900
- C. P. Boyer, E. G. Kalnins, and W. Miller Jr., Symmetry and separation of variables for the Helmholtz and Laplace equations, Nagoya Math. J. 60 (1976), 35β80. MR 393791, DOI 10.1017/S0027763000017165
- C. P. Boyer and E. G. Kalnins, Symmetries of the Hamilton-Jacobi equation, J. Mathematical Phys. 18 (1977), no.Β 5, 1032β1045. MR 438969, DOI 10.1063/1.523364
- C. P. Boyer, E. G. Kalnins, and W. Miller Jr., Symmetry and separation of variables for the Hamilton-Jacobi equation $W^{2}_{t}-W^{2}_{x}-W^{2}_{y}=0$, J. Mathematical Phys. 19 (1978), no.Β 1, 200β211. MR 473472, DOI 10.1063/1.523539
- E. G. Kalnins and Willard Miller Jr., Separable coordinates for three-dimensional complex Riemannian spaces, J. Differential Geometry 14 (1979), no.Β 2, 221β236. MR 587550, DOI 10.4310/jdg/1214434971
- Willard Miller Jr., Lie theory and separation of variables. I. Parabolic cylinder coordinates, SIAM J. Math. Anal. 5 (1974), 625β643. MR 372377, DOI 10.1137/0505063
- Willard Miller Jr., Symmetry, separation of variables, and special functions, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp.Β 305β351. MR 0390327
- Kentaro Yano, The theory of Lie derivatives and its applications, North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen; Interscience Publishers Inc., New York, 1957. MR 0088769
- P. Moon and D. E. Spencer, Field theory handbook, 2nd ed., Springer-Verlag, Berlin, 1988. Including coordinate systems, differential equations and their solutions. MR 947546
- Luther Pfahler Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, N. J., 1949. 2d printing. MR 0035081
- E. G. Kalnins and W. Miller Jr., Lie theory and the wave equation in space-time. I. The Lorentz group, J. Mathematical Phys. 18 (1977), no.Β 1, 1β16. MR 507308, DOI 10.1063/1.523130
- E. G. Kalnins and W. Miller Jr., Lie theory and separation of variables. IX. Orthogonal $R$-separable coordinate systems for the wave equation $\psi _{tt}-D_{2}\psi =0$, J. Mathematical Phys. 17 (1976), no.Β 3, 331β355. MR 404523, DOI 10.1063/1.522900 A. Erdelyi et al., Higher transcendental functions, Vol. II, McGraw-Hill, New York, 1953. M. BΓ΄cher, Die Reihentwickelungen der Potentialtheorie, Leipzig, 1894.
- Willard Miller Jr., Lie theory and separation of variables. I. Parabolic cylinder coordinates, SIAM J. Math. Anal. 5 (1974), 625β643. MR 372377, DOI 10.1137/0505063 L. Ovsjannicov, Group properties of differential equations, Academy of Sciences USSR, Novosibirsk, 1962. (Russian).
- L. P. Eisenhart, Enumeration of potentials for which one-particle Schroedinger equations are separable, Phys. Rev. (2) 74 (1948), 87β89. MR 25056, DOI 10.1103/PhysRev.74.87 A. Makarov, J. Smorodinsky, K. Valiev and P. Winternitz, A systematic search for nonrelativistic systems with dynamical symmetries. Part I: The integrals of motion, Nuovo Cimento A 52 (1967), 1061-1084. Y. Smorodinsky and I. Tugov, On complete sets of observables, Soviet Physics JETP (1966), 434-436.
- N. Levinson, B. Bogert, and R. M. Redheffer, Separation of Laplaceβs equation, Quart. Appl. Math. 7 (1949), 241β262. MR 32091, DOI 10.1090/S0033-569X-1949-32091-3
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 242 (1978), 355-376
- MSC: Primary 53B20; Secondary 22E70, 35A22
- DOI: https://doi.org/10.1090/S0002-9947-1978-0496814-5
- MathSciNet review: 496814