Centers of hypergroups
HTML articles powered by AMS MathViewer
- by Kenneth A. Ross
- Trans. Amer. Math. Soc. 243 (1978), 251-269
- DOI: https://doi.org/10.1090/S0002-9947-1978-0493161-2
- PDF | Request permission
Abstract:
This paper initiates a study of Z-hypergroups, that is, commutative topological hypergroups K such that $K/Z$ is compact where Z denotes the maximum subgroup (equivalently, the center) of K. The character hypergroup ${K^\wedge }$ is studied and its connection with the locally compact abelian group ${Z^\wedge }$ is given. Each Z-group is shown to correspond in a natural way to a Z-hypergroup. It is observed that the dual of a Z-group is itself a hypergroup. The basic orthogonality relations on Z-groups due to S. Grosser and M. Moskowitz are shown to hold for most Z-hypergroups. Some results on measure algebras of compact hypergroups due to C. F. Dunkl are extended to a class of noncompact hypergroups.References
- Charles F. Dunkl, Operators and harmonic analysis on the sphere, Trans. Amer. Math. Soc. 125 (1966), 250–263. MR 203371, DOI 10.1090/S0002-9947-1966-0203371-9
- Charles F. Dunkl, Structure hypergroups for measure algebras, Pacific J. Math. 47 (1973), 413–425. MR 336225, DOI 10.2140/pjm.1973.47.413
- Charles F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331–348. MR 320635, DOI 10.1090/S0002-9947-1973-0320635-2
- Charles F. Dunkl and Donald E. Ramirez, A family of countably compact $P_{\ast }$-hypergroups, Trans. Amer. Math. Soc. 202 (1975), 339–356. MR 380267, DOI 10.1090/S0002-9947-1975-0380267-9
- Siegfried Grosser, Richard Mosak, and Martin Moskowitz, Duality and harmonic analysis on central topological groups. I, Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math. 35 (1973), 65–77. MR 0340470, DOI 10.1016/1385-7258(73)90039-5
- Siegfried Grosser and Martin Moskowitz, Representation theory of central topological groups, Trans. Amer. Math. Soc. 129 (1967), 361–390. MR 229753, DOI 10.1090/S0002-9947-1967-0229753-8
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Robert I. Jewett, Spaces with an abstract convolution of measures, Advances in Math. 18 (1975), no. 1, 1–101. MR 394034, DOI 10.1016/0001-8708(75)90002-X
- Richard D. Mosak, The $L^{1}$- and $C^{\ast }$-algebras of $[FIA]^{-}_{B}$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277–310. MR 293016, DOI 10.1090/S0002-9947-1972-0293016-7
- David L. Ragozin, Central measures on compact simple Lie groups, J. Functional Analysis 10 (1972), 212–229. MR 0340965, DOI 10.1016/0022-1236(72)90050-x
- David L. Ragozin, Rotation invariant measure algebras on Euclidean space, Indiana Univ. Math. J. 23 (1973/74), 1139–1154. MR 338688, DOI 10.1512/iumj.1974.23.23091
- Kenneth A. Ross, Hypergroups and centers of measure algebras, Symposia Mathematica, Vol. XXII (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, INDAM, Rome, 1976) Academic Press, London, 1977, pp. 189–203. MR 0511036
- Alan Schwartz, The structure of the algebra of Hankel transforms and the algebra of Hankel-Stieltjes transforms, Canadian J. Math. 23 (1971), 236–246. MR 273312, DOI 10.4153/CJM-1971-023-x
- René Spector, Aperçu de la théorie des hypergroupes, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973–1975) Lecture Notes in Math., Vol. 497, Springer, Berlin, 1975, pp. 643–673 (French). MR 0447974 —, Mesures invariantes sur les hypergroupes (to appear).
- Joseph L. Taylor, Measure algebras, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 16, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1973. Expository lectures from the CBMS Regional Conference held at the University of Montana, Missoula, Mont., June 1972. MR 0427949, DOI 10.1090/cbms/016
- Ajit Kaur Chilana and Kenneth A. Ross, Spectral synthesis in hypergroups, Pacific J. Math. 76 (1978), no. 2, 313–328. MR 622041, DOI 10.2140/pjm.1978.76.313
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 243 (1978), 251-269
- MSC: Primary 43A10; Secondary 22A99
- DOI: https://doi.org/10.1090/S0002-9947-1978-0493161-2
- MathSciNet review: 0493161