Pure weak mixing
HTML articles powered by AMS MathViewer
- by R. Ellis and S. Glasner
- Trans. Amer. Math. Soc. 243 (1978), 135-146
- DOI: https://doi.org/10.1090/S0002-9947-1978-0494022-5
- PDF | Request permission
Abstract:
We show that for the group of integers Z, the maximal common factor of the maximal weakly mixing minimal flows coincides with the universal purely weakly mixing flow. We show that the maximal weakly mixing minimal flows are not all isomorphic to each other. None of the maximal w.m. flows are regular.References
- Joseph Auslander, Endomorphisms of minimal sets, Duke Math. J. 30 (1963), 605–614. MR 155311
- Robert Ellis, Lectures on topological dynamics, W. A. Benjamin, Inc., New York, 1969. MR 0267561
- Robert Ellis, The construction of minimal discrete flows, Amer. J. Math. 87 (1965), 564–574. MR 185589, DOI 10.2307/2373063 —, Cocycles in topological dynamics (preprint).
- Robert Ellis, Shmuel Glasner, and Leonard Shapiro, Proximal-isometric ($\scr P\scr J$) flows, Advances in Math. 17 (1975), no. 3, 213–260. MR 380755, DOI 10.1016/0001-8708(75)90093-6
- Shmuel Glasner, Proximal flows, Lecture Notes in Mathematics, Vol. 517, Springer-Verlag, Berlin-New York, 1976. MR 0474243, DOI 10.1007/BFb0080139
- Harry Furstenberg, Harvey Keynes, and Leonard Shapiro, Prime flows in topological dynamics, Israel J. Math. 14 (1973), 26–38. MR 321055, DOI 10.1007/BF02761532
- Reuven Peleg, Some extensions of weakly mixing flows, Israel J. Math. 9 (1971), 330–336. MR 281184, DOI 10.1007/BF02771683
- Karl E. Petersen, Extension of minimal transformation groups, Math. Systems Theory 5 (1971), 365–375. MR 303562, DOI 10.1007/BF01694081
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 243 (1978), 135-146
- MSC: Primary 54H20
- DOI: https://doi.org/10.1090/S0002-9947-1978-0494022-5
- MathSciNet review: 0494022