Branch point structure of covering maps onto nonorientable surfaces
HTML articles powered by AMS MathViewer
- by Cloyd L. Ezell PDF
- Trans. Amer. Math. Soc. 243 (1978), 123-133 Request permission
Abstract:
Let $f:M \to N$ be a degree n branched cover onto a compact, connected nonorientable surface with branch points ${y_1}, {y_2}, \ldots , {y_m}$ in N, and let the multiplicities at points in ${f^{ - 1}}({y_i})$ be ${\mu _{i1}}, {\mu _{i2}}, \ldots , {\mu _{i{k_i}}}$. The branching array of f, designated by B, is the following array of numbers: \[ \begin {gathered} {\mu _{11}}, {\mu _{12}}, \ldots , {\mu _{1{k_1}}} {\mu _{21}}, {\mu _{22 }}, \ldots , {\mu _{2{k_2}}} \vdots {\mu _{m1}}, {\mu _{m2}}, \ldots , {\mu _{m{k_m}}} \end {gathered} \] We show that the numbers in the branching array must always satisfy the following conditions: (1) \[ \sum {\{ {\mu _{ij}} + 1|j = 1, 2, \ldots , {k_i}\} = n} \], (2) $\sum {\{ {\mu _{ij}}|i = 1, 2, \ldots ,m;j = 1, 2, \ldots ,{k_i}\} }$ is even. Furthermore, if B is any array of numbers satisfying these conditions, and if N is not the projective plane, then there is a branched cover onto N with B as its branching array.References
- Otto Endler, Compact Riemann surfaces with prescribed ramifications and Puiseux series, Bol. Soc. Brasil. Mat. 2 (1971), no. 2, 61–64. MR 316702, DOI 10.1007/BF02584685
- George K. Francis, Assembling compact Riemann surfaces with given boundary curves and branch points on the sphere, Illinois J. Math. 20 (1976), no. 2, 198–217. MR 402776
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1–60 (German). MR 1510692, DOI 10.1007/BF01199469
- William S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, Inc., New York, 1967. MR 0211390 C. B. Shepardson, Hurwitz-Riemann formulas, Ph.D. thesis, Syracuse Univ., 1973.
- René Thom, L’équivalence d’une fonction différentiable et d’un polynome, Topology 3 (1965), no. suppl, suppl. 2, 297–307 (French). MR 187249, DOI 10.1016/0040-9383(65)90079-0
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 243 (1978), 123-133
- MSC: Primary 55A10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0500900-0
- MathSciNet review: 0500900