On the stable decomposition of $\Omega ^{2}S^{r+2}$
HTML articles powered by AMS MathViewer
- by E. H. Brown and F. P. Peterson
- Trans. Amer. Math. Soc. 243 (1978), 287-298
- DOI: https://doi.org/10.1090/S0002-9947-1978-0500933-4
- PDF | Request permission
Abstract:
In this paper we show that ${\Omega ^2}{S^{r + 2}}$ is stably homotopy equivalent to a wedge of suspensions of other spaces $C_k^1$, and that $C_k^1$ is homotopy 2-equivalent to the Brown-Gitler spectrum.References
- V. I. Arnol′d, Topological invariants of algebraic functions. II, Funkcional. Anal. i Priložen. 4 (1970), no. 2, 1–9 (Russian). MR 0276244
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Edgar H. Brown Jr. and Samuel Gitler, A spectrum whose cohomology is a certain cyclic module over the Steenrod algebra, Topology 12 (1973), 283–295. MR 391071, DOI 10.1016/0040-9383(73)90014-1
- Edgar H. Brown Jr. and Franklin P. Peterson, Relations among characteristic classes. I, Topology 3 (1964), no. suppl, suppl. 1, 39–52. MR 163326, DOI 10.1016/0040-9383(64)90004-7
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146, DOI 10.1007/BFb0080464
- F. R. Cohen, M. E. Mahowald, and R. J. Milgram, The stable decomposition for the double loop space of a sphere, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 225–228. MR 520543 R. Cohen, On odd primary homotopy theory, Thesis, Brandeis Univ., 1978.
- Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111–118. MR 141126, DOI 10.7146/math.scand.a-10517
- R. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119–126. MR 150755, DOI 10.7146/math.scand.a-10518 D. B. Fuks, Cohomologies of the group COS $\bmod \,2$, Functional Anal. Appl. 4 (1970), 143-151.
- Mark Mahowald, A new infinite family in ${}_{2}\pi _{*}{}^s$, Topology 16 (1977), no. 3, 249–256. MR 445498, DOI 10.1016/0040-9383(77)90005-2
- V. P. Snaith, A stable decomposition of $\Omega ^{n}S^{n}X$, J. London Math. Soc. (2) 7 (1974), 577–583. MR 339155, DOI 10.1112/jlms/s2-7.4.577
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 243 (1978), 287-298
- MSC: Primary 55D35
- DOI: https://doi.org/10.1090/S0002-9947-1978-0500933-4
- MathSciNet review: 0500933