The minimum norm projection on $C^{2}$-manifolds in $\textbf {R}^{n}$
HTML articles powered by AMS MathViewer
- by Theagenis J. Abatzoglou
- Trans. Amer. Math. Soc. 243 (1978), 115-122
- DOI: https://doi.org/10.1090/S0002-9947-1978-0502897-6
- PDF | Request permission
Abstract:
We study the notion of best approximation from a point $x \in {R^n}$ to a ${C^2}$-manifold. Using the concept of radius of curvature, introduced by J. R. Rice, we obtain a formula for the Fréchet derivative of the minimum norm projection (best approximation) of $x \in {R^n}$ into the manifold. We also compute the norm of this derivative in terms of the radius of curvature.References
- C. K. Chui, E. R. Rozema, P. W. Smith, and J. D. Ward, Metric curvature, folding, and unique best approximation,, SIAM J. Math. Anal. 7 (1976), no. 3, 436–449. MR 399725, DOI 10.1137/0507035
- Charles K. Chui and Philip W. Smith, Unique best nonlinear approximation in Hilbert spaces, Proc. Amer. Math. Soc. 49 (1975), 66–70. MR 361575, DOI 10.1090/S0002-9939-1975-0361575-X
- Herbert Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. MR 110078, DOI 10.1090/S0002-9947-1959-0110078-1
- John R. Rice, The approximation of functions. Vol. 2: Nonlinear and multivariate theory, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0244675
- Edward R. Rozema and Philip W. Smith, Nonlinear approximation in uniformly smooth Banach spaces, Trans. Amer. Math. Soc. 188 (1974), 199–211. MR 330875, DOI 10.1090/S0002-9947-1974-0330875-5
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 243 (1978), 115-122
- MSC: Primary 58C20; Secondary 41A50
- DOI: https://doi.org/10.1090/S0002-9947-1978-0502897-6
- MathSciNet review: 502897