A note on the operator $X\rightarrow AX-XB$
HTML articles powered by AMS MathViewer
- by L. Fialkow
- Trans. Amer. Math. Soc. 243 (1978), 147-168
- DOI: https://doi.org/10.1090/S0002-9947-1978-0502900-3
- PDF | Request permission
Abstract:
If A and B are bounded linear operators on an infinite dimensional complex Hilbert space $\mathcal {H}$, let $\tau (X) = AX - XB$ (X in $\mathcal {L}(\mathcal {H})$). It is proved that $\sigma (\tau ) = \sigma (\tau |{C_p}) (1 \leqslant p \leqslant \infty )$, where, for $1 \leqslant p < \infty$, ${C_p}$ is the Schatten p-ideal, and ${C_\infty }$ is the ideal of all compact operators in $\mathcal {L}(\mathcal {H})$. Analogues of this result for the parts of the spectrum are obtained and sufficient conditions are given for $\tau$ to be injective. It is also proved that if A and B are quasisimilar, then the right essential spectrum of A intersects the left essential spectrum of B.References
- Constantin Apostol, Quasitriangularity in Hilbert space, Indiana Univ. Math. J. 22 (1972/73), 817–825. MR 326450, DOI 10.1512/iumj.1973.22.22069
- Constantin Apostol, Quasiaffine transforms of quasinilpotent compact operators, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 7, 813–816. MR 635137
- Edward A. Azoff, Spectrum and direct integral, Trans. Amer. Math. Soc. 197 (1974), 211–223. MR 350494, DOI 10.1090/S0002-9947-1974-0350494-4
- Ion Colojoară and Ciprian Foiaş, Theory of generalized spectral operators, Mathematics and its Applications, Vol. 9, Gordon and Breach Science Publishers, New York-London-Paris, 1968. MR 0394282
- Chandler Davis and Peter Rosenthal, Solving linear operator equations, Canadian J. Math. 26 (1974), 1384–1389. MR 355649, DOI 10.4153/CJM-1974-132-6
- James A. Deddens, Intertwining analytic Toeplitz operators, Michigan Math. J. 18 (1971), 243–246. MR 283611
- R. G. Douglas and Carl Pearcy, Hyperinvariant subspaces and transitive algebras, Michigan Math. J. 19 (1972), 1–12. MR 295118, DOI 10.1307/mmj/1029000793
- L. A. Fialkow, A note on quasisimilarity of operators, Acta Sci. Math. (Szeged) 39 (1977), no. 1-2, 67–85. MR 445319
- Peter A. Fillmore, Notes on operator theory, Van Nostrand Reinhold Mathematical Studies, No. 30, Van Nostrand Reinhold Co., New York-London-Melbourne, 1970. MR 0257765
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Domingo A. Herrero, On the spectra of the restrictions of an operator, Trans. Amer. Math. Soc. 233 (1977), 45–58. MR 473870, DOI 10.1090/S0002-9947-1977-0473870-0
- T. B. Hoover, Quasi-similarity of operators, Illinois J. Math. 16 (1972), 678–686. MR 312304, DOI 10.1215/ijm/1256065551
- B. E. Johnson and J. P. Williams, The range of a normal derivation, Pacific J. Math. 58 (1975), no. 1, 105–122. MR 380490, DOI 10.2140/pjm.1975.58.105
- H. W. Kim, Carl Pearcy, and A. L. Shields, Rank-one commutators and hyperinvariant subspaces, Michigan Math. J. 22 (1975), no. 3, 193–194 (1976). MR 390803
- Gunter Lumer and Marvin Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32–41. MR 104167, DOI 10.1090/S0002-9939-1959-0104167-0
- Carl M. Pearcy, Some recent developments in operator theory, Regional Conference Series in Mathematics, No. 36, American Mathematical Society, Providence, R.I., 1978. MR 0487495, DOI 10.1090/cbms/036
- Heydar Radjavi and Peter Rosenthal, Hyperinvariant subspaces for spectral and $n$-normal operators, Acta Sci. Math. (Szeged) 32 (1971), 121–126. MR 308817
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Marvin Rosenblum, On the operator equation $BX-XA=Q$, Duke Math. J. 23 (1956), 263–269. MR 79235
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112, DOI 10.1007/978-3-642-87652-3
- Joseph G. Stampfli, A local spectral theory for operators. V. Spectral subspaces for hyponormal operators, Trans. Amer. Math. Soc. 217 (1976), 285–296. MR 420325, DOI 10.1090/S0002-9947-1976-0420325-4
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190 L. Williams, Quasisimilar operators have overlapping essential spectra, Acta Sci. Math. (Szeged) (submitted).
- Lawrence Fialkow, A note on quasisimilarity. II, Pacific J. Math. 70 (1977), no. 1, 151–162. MR 477839, DOI 10.2140/pjm.1977.70.151
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142, DOI 10.1090/mmono/018 A. Brown and C. Pearcy, On the spectra of derivations on norm ideals, Acta Sci. Math. (Szeged) (submitted). L. A. Fialkow, A note on the solution of the operator equation $AX\, - XB\, = \,Y$ in norm ideals (preprint). J. G. Stampfli, On self-adjoint derivation ranges (preprint).
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682, DOI 10.1007/978-3-642-65574-6
- John B. Conway and Pei Yuan Wu, The splitting of $A(T_{1}\oplus T_{2})$ and related questions, Indiana Univ. Math. J. 26 (1977), no. 1, 41–56. MR 425673, DOI 10.1512/iumj.1977.26.26002
- John B. Conway, The direct sum of normal operators, Indiana Univ. Math. J. 26 (1977), no. 2, 277–289. MR 440417, DOI 10.1512/iumj.1977.26.26020
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 243 (1978), 147-168
- MSC: Primary 47A50; Secondary 47A10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0502900-3
- MathSciNet review: 502900