Degrees of irreducible characters of $(B, N)$-pairs of types $E_{6}$ and $E_{7}$
HTML articles powered by AMS MathViewer
- by David B. Surowski
- Trans. Amer. Math. Soc. 243 (1978), 235-249
- DOI: https://doi.org/10.1090/S0002-9947-1978-0502905-2
- PDF | Request permission
Abstract:
Let G be a finite (B, N)-pair whose Coxeter system is of type ${E_6}$ or ${E_7}$. Let $1_B^G$ be the permutation character of the action of G on the left cosets of the Borel subgroup B in G. In this paper we give the character degrees of the irreducible constituents of $1_B^G$.References
- C. T. Benson and C. W. Curtis, On the degrees and rationality of certain characters of finite Chevalley groups, Trans. Amer. Math. Soc. 165 (1972), 251â273. MR 304473, DOI 10.1090/S0002-9947-1972-0304473-1
- Clark T. Benson and David A. Gay, On dimension functions of the generic algebra of type $D_{n}$, J. Algebra 45 (1977), no. 2, 435â438. MR 444753, DOI 10.1016/0021-8693(77)90335-0
- Clark T. Benson, Larry C. Grove, and David B. Surowski, Semilinear automorphisms and dimension functions for certain characters of finite Chevalley groups, Math. Z. 144 (1975), no. 2, 149â159. MR 382468, DOI 10.1007/BF01190944
- N. Bourbaki, ĂlĂ©ments de mathĂ©matique. Fasc. XXXIV. Groupes et algĂšbres de Lie. Chapitre IV: Groupes de Coxeter et systĂšmes de Tits. Chapitre V: Groupes engendrĂ©s par des rĂ©flexions. Chapitre VI: systĂšmes de racines, ActualitĂ©s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- C. W. Curtis, Corrections and additions to: âOn the degrees and rationality of certain characters of finite Chevalley groupsâ (Trans. Amer. Math. Soc. 165 (1972), 251â273) by C. T. Benson and Curtis, Trans. Amer. Math. Soc. 202 (1975), 405â406. MR 364483, DOI 10.1090/S0002-9947-1975-0364483-8
- Charles W. Curtis and Timothy V. Fossum, On centralizer rings and characters of representations of finite groups, Math. Z. 107 (1968), 402â406. MR 237665, DOI 10.1007/BF01110070
- C. W. Curtis, N. Iwahori, and R. Kilmoyer, Hecke algebras and characters of parabolic type of finite groups with $(B,$ $N)$-pairs, Inst. Hautes Ătudes Sci. Publ. Math. 40 (1971), 81â116. MR 347996, DOI 10.1007/BF02684695
- J. S. Frame, The classes and representations of the groups of $27$ lines and $28$ bitangents, Ann. Mat. Pura Appl. (4) 32 (1951), 83â119. MR 47038, DOI 10.1007/BF02417955
- James A. Green, On the Steinberg characters of finite Chevalley groups, Math. Z. 117 (1970), 272â288. MR 280612, DOI 10.1007/BF01109848 P. Hoefsmit, Representations of Hecke algebras of finite groups with BN-pairs of classical type, Ph.D. Dissertation, Univ. of British Columbia, 1974.
- Nagayoshi Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215â236 (1964). MR 165016 R. W. Kilmoyer, Some irreducible complex representations of a finite group with a BN-pair, Ph.D. Dissertation, M.I.T., 1969.
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Dudley E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford University Press, New York, 1940. MR 0002127
- George W. Mackey, Induced representations of groups and quantum mechanics, W. A. Benjamin, Inc., New York-Amsterdam; Editore Boringhieri, Turin, 1968. MR 0507212
- G. de B. Robinson, Representation theory of the symmetric group, Mathematical Expositions, No. 12, University of Toronto Press, Toronto, 1961. MR 0125885
- Louis Solomon, The orders of the finite Chevalley groups, J. Algebra 3 (1966), 376â393. MR 199275, DOI 10.1016/0021-8693(66)90007-X
- David B. Surowski, Representations of a subalgebra of the generic algebra corresponding to the Weyl group of type $F_{4}$, Comm. Algebra 5 (1977), no. 8, 873â888. MR 442104, DOI 10.1080/00927877708822200 â, Irreducible characters of B-N pairs of exceptional types, Ph.D. Dissertation, Univ. of Arizona, 1975.
- Jacques Tits, Buildings of spherical type and finite BN-pairs, Lecture Notes in Mathematics, Vol. 386, Springer-Verlag, Berlin-New York, 1974. MR 0470099 A. Young, On quantitative substitutional analysis. V, Proc. London Math. Soc. 31 (2) (1930), 273-288.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 243 (1978), 235-249
- MSC: Primary 20C15; Secondary 16A25
- DOI: https://doi.org/10.1090/S0002-9947-1978-0502905-2
- MathSciNet review: 502905