Generalized conjugate function theorems for solutions of first-order elliptic systems on the plane
HTML articles powered by AMS MathViewer
- by Chung Ling Yu
- Trans. Amer. Math. Soc. 244 (1978), 1-35
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506608-X
- PDF | Request permission
Abstract:
Our essential aim is to generalize Privoloff’s theorem, Schwarz reflection principle, Kolmogorov’s theorem and the theorem of M. Riesz for conjugate functions to the solutions of differential equations in the $z = x + iy$ plane of the following elliptic type: \begin{equation} \tag {$\text {(M)}$} \frac {{\partial u}} {{\partial x}} - \frac {{\partial v}} {{\partial y}} = au + bv + f,\frac {{\partial u}} {{\partial y}} + \frac {{\partial v}} {{\partial x}} = cu + dv + g. \end{equation} Theorem 1. Let the coefficients of (M) be Hölder continuous on $\left | z \right | \leqslant 1$. Let $(u, v)$ be a solution of (M) in $\left | z \right | < 1$. If u is continuous on $\left | z \right | \leqslant 1$ and Hölder continuous with index $\alpha$ on $\left | z \right | = 1$, then $(u, v)$ is Höolder continuous with index $\alpha$ on $\left | z \right | \leqslant 1$. Theorem 2. Let the coefficients of (M) be continuous on $\left | z \right | \leqslant 1$ and satisfy the condition \begin{equation} \tag {$\text {(N)}$} \int _0^y {b(x,t)dt + \int _0^x {d(t,y)dt = \int _0^y {b(0,t)dt + \int _0^x {d(t,0)dt}}}} \end{equation} for $\left | z \right | \leqslant 1$. And let ${\left \| f \right \|_p} = {\sup _{0 \leqslant r < 1}}\{ (1/2\pi )\int _{ - \pi }^\pi {{{\left | {f(r{e^{i\theta }})} \right |}^p}d\theta {\} ^{1/p}}}$. Then to each p, $0 < p < \infty$, there correspond two constants ${A_p}$ and ${B_p}$ such that \[ \begin {array}{*{20}{c}} {{{\left \| v \right \|}_p} \leqslant {A_p}{{\left \| u \right \|}_p} + {B_p},} & {1 < p < \infty ,} \\ {{{\left \| v \right \|}_p} \leqslant {A_p}{{\left \| u \right \|}_1} + {B_p},} & {0 < p < 1,} \\ \end {array} \] hold for every solution $(u, v)$ of (M) in $\left | z \right | < 1$ with $v (0) = 0$. If $f \equiv g \equiv 0$, the theorem holds for ${B_p} = 0$. Furthermore, if b and d do not satisfy the condition (N) in $\left | z \right | \leqslant 1$, then we can relax the condition $v (0) = 0$, and still have the above inequalities. Theorem 3. Let the coefficients of (M) be analytic for x, y in $\left | z \right | < 1$. Let $(u, v)$ be a solution of (M) in $\{ \left | z \right | < 1\} \cap \{ y > 0\}$. If u is continuous in $\{ \left | z \right | < 1\} \cap \{ y \geqslant 0\}$ and analytic on $\{ - 1 < x < 1\}$, then $(u,v)$ can be continued analytically across the boundary $\{ - 1 < x < 1\}$. Furthermore, if the coefficients and u satisfy some further boundary conditions, then $(u, v)$ can be continued analytically into the whole of $\{ \left | z \right | < 1\}$.References
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35–92. MR 162050, DOI 10.1002/cpa.3160170104
- Lipman Bers, Theory of pseudo-analytic functions, New York University, Institute for Mathematics and Mechanics, New York, 1953. MR 0057347
- Lipman Bers, Fritz John, and Martin Schechter, Partial differential equations, Lectures in Applied Mathematics, Vol. III, Interscience Publishers, a division of John Wiley & Sons, Inc., New York-London-Sydney, 1964. With special lectures by Lars Garding and A. N. Milgram. MR 0163043
- F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1966. Translation edited by I. N. Sneddon. MR 0198152
- P. R. Garabedian, Analyticity and reflection for plane elliptic systems, Comm. Pure Appl. Math. 14 (1961), 315–322. MR 136848, DOI 10.1002/cpa.3160140311
- Hans Lewy, On the reflection laws of second order differential equations in two independent variables, Bull. Amer. Math. Soc. 65 (1959), 37–58. MR 104048, DOI 10.1090/S0002-9904-1959-10270-6
- N. I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Publishing, Groningen, 1972. Boundary problems of functions theory and their applications to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted. MR 0355494
- Umberto Neri, Singular integrals, Lecture Notes in Mathematics, Vol. 200, Springer-Verlag, Berlin-New York, 1971. Notes for a course given at the University of Maryland, College Park, Md., 1967. MR 0463818, DOI 10.1007/BFb0079049
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- I. N. Vekua, Novye metody rešeniya èlliptičeskih uravneniĭ, OGIZ, Moscow-Leningrad, 1948 (Russian). MR 0034503
- I. N. Vekua, Generalized analytic functions, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962. MR 0150320
- Chung Ling Yu, Reflection principle for systems of first order elliptic equations with analytic coefficients, Trans. Amer. Math. Soc. 164 (1972), 489–501. MR 293110, DOI 10.1090/S0002-9947-1972-0293110-0 —, Integral representations, Cauchy problem and reflection principles under nonlinear boundary conditions for systems of first order elliptic equations with analytic coefficients (to appear).
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 244 (1978), 1-35
- MSC: Primary 35J55; Secondary 30G20
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506608-X
- MathSciNet review: 506608