Existence theorems for Pareto optimization; multivalued and Banach space valued functionals
HTML articles powered by AMS MathViewer
- by L. Cesari and M. B. Suryanarayana
- Trans. Amer. Math. Soc. 244 (1978), 37-65
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506609-1
- PDF | Request permission
Abstract:
Existence theorems are obtained for optimization problems where the cost functional takes values in an ordered Banach space. The order is defined in terms of a closed convex cone in the Banach space; and in this connection, several relevant properties of cones are studied and they are shown to coincide in the finite dimensional case. The notion of a weak (Pareto) extremum of a subset of an ordered Banach space is then introduced. Existence theorems are proved for extrema for Mayer type as well as Lagrange type problems-in a manner analogous to and including those with scalar valued cost. The side conditions are in the form of general operator equations on a class of measurable functions defined on a finite measure space. Needed closure and lower closure theorems are proved. Also, several analytic criteria for lower closure are provided. Before the appendix, several illustrative examples are given. In the appendix, a criterion (different from the one used in main text) is given and proved, for the Pareto optimality of an element.References
- Leonard D. Berkovitz, Lower closure and existence theorems in optimal control, International Conference on Differential Equations (Proc., Univ. Southern California, Los Angeles, Calif., 1974) Academic Press, New York, 1975, pp. 26–39. MR 0423158 A. Blaquière (Editor), Topics in differential games, North-Holland, Amsterdam, 1973. N. Bourbaki, Espaces vectoriels topologiques, Chapters I, II, Hermann, Paris, 1955. MR 14, 880.
- Lamberto Cesari, Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints. I, Trans. Amer. Math. Soc. 124 (1966), 369–412. MR 203542, DOI 10.1090/S0002-9947-1966-0203542-1
- L. Cesari, Geometric and analytic views in existence theorems for optimal control in Banach spaces. I. Distributed parameters, J. Optim. Theory Appl. 14 (1974), 505–520. Collection of articles dedicated to Magnus R. Hestenes. MR 637216, DOI 10.1007/BF00932845
- Lamberto Cesari, Lower semicontinuity and lower closure theorems without seminormality conditions, Ann. Mat. Pura Appl. (4) 98 (1974), 381–397. MR 344966, DOI 10.1007/BF02414036
- Lamberto Cesari, Closure theorems for orientor fields and weak convergence, Arch. Rational Mech. Anal. 55 (1974), 332–356. MR 350589, DOI 10.1007/BF00250438
- Lamberto Cesari, Sobolev spaces and multidimensional Lagrange problems of optimization, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 193–227. MR 233252
- Lamberto Cesari, Existence theorems for optimal controls of the Mayer type, SIAM J. Control 6 (1968), 517–552. MR 0243400, DOI 10.1137/0306033
- Lamberto Cesari and David E. Cowles, Existence theorems in multidimensional problems of optimization with distributed and boundary controls, Arch. Rational Mech. Anal. 46 (1972), 321–355. MR 336497, DOI 10.1007/BF00281101
- L. Cesari and M. B. Suryanarayana, Closure theorems without seminormality conditions, J. Optim. Theory Appl. 15 (1975), 441–465. Existence theory in the calculus of variations and optimal control. MR 365278, DOI 10.1007/BF00933207
- L. Cesari and M. B. Suryanarayana, Nemitsky’s operators and lower closure theorems, J. Optim. Theory Appl. 19 (1976), no. 1, 165–183. Existence theorem issue. MR 442790, DOI 10.1007/BF00934059 —, Existence theorems for Pareto problems of optimization, Conf. Calculus of Variations, and Control Theory, Math. Research Center, Madison, Wis., 1975. M. Connors and D. Teichrow, Optimal control of dynamic operations research models, Internat. Textbook, Scranton, Pa., 1967.
- N. O. Da Cunha and E. Polak, Constrained minimization under vector-valued criteria in linear topological spaces, Mathematical Theory of Control (Proc. Conf., Los Angeles, Calif., 1967) Academic Press, New York, 1967, pp. 96–108. MR 0257847
- Mahlon M. Day, Normed linear spaces, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962. MR 0145316
- Graham Jameson, Ordered linear spaces, Lecture Notes in Mathematics, Vol. 141, Springer-Verlag, Berlin-New York, 1970. MR 0438077, DOI 10.1007/BFb0059130 P. J. Kaiser, Existence theorems in the calculus of variations, Ph.D. thesis, Univ. of Michigan, 1973.
- P. J. Kaiser and M. B. Suryanarayana, Orientor field equations in Banach spaces, J. Optim. Theory Appl. 19 (1976), no. 1, 141–183. Existence theorem issue. MR 428160, DOI 10.1007/BF00934058
- V. L. Klee Jr., Convex sets in linear spaces. II, Duke Math. J. 18 (1951), 875–883. MR 47251
- M. A. Krasnosel′skiĭ, P. P. Zabreĭko, E. I. Pustyl′nik, and P. E. Sobolevskiĭ, Integral′nye operatory v prostranstvakh summiruemykh funktsiĭ, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0206751
- E. J. McShane and R. B. Warfield Jr., On Filippov’s implicit functions lemma, Proc. Amer. Math. Soc. 18 (1967), 41–47. MR 208590, DOI 10.1090/S0002-9939-1967-0208590-X
- J. J. Moreau, Convexity and duality, Functional Analysis and Optimization, Academic Press, New York, 1966, pp. 145–169. MR 0217617
- Czesław Olech, Lexicographical order, range of integrals and “bang-bang” principle, Mathematical Theory of Control (Proc. Conf., Los Angeles, Calif., 1967) Academic Press, New York, 1967, pp. 35–45. MR 0254709
- C. Olech, Weak lower semicontinuity of integral functionals, J. Optim. Theory Appl. 19 (1976), no. 1, 3–16. Existence theorem issue. MR 428161, DOI 10.1007/BF00934048 V. Pareto, Course d’economie politique, Lausanne, Rouge, 1896.
- Steve Smale, Global analysis and economics. I. Pareto optimum and a generalization of Morse theory, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 531–544. MR 0341535
- M. B. Suryanarayana, Remarks on lower semicontinuity and lower closure, J. Optim. Theory Appl. 19 (1976), no. 1, 125–140. Existence theorem issue. MR 442789, DOI 10.1007/BF00934057 H. F. Weinberger, Conditions for local Pareto optima (to appear).
- P. L. Yu, Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives, J. Optim. Theory Appl. 14 (1974), 319–377. MR 381739, DOI 10.1007/BF00932614
- P. L. Yu and G. Leitmann, Nondominated decisions and cone convexity in dynamic multicriteria decision problems, J. Optim. Theory Appl. 14 (1974), 573–584. Collection of articles dedicated to Magnus R. Hestenes. MR 389241, DOI 10.1007/BF00932849 L. A. Zadeh, Optimality and nonscalar valued performance criteria, IEEE Trans. Automatic Control AC-8 (1963), 59-60.
- Jean-Pierre Aubin, A Pareto minimum principle, Differential Games and Related Topics (Proc. Internat. Summer School, Varenna, 1970) North-Holland, Amsterdam, 1971, pp. 147–175. MR 0277459
- L. Cesari and M. B. Suryanarayana, An existence theorem for Pareto problems, Nonlinear Anal. 2 (1978), no. 2, 225–233. MR 512285, DOI 10.1016/0362-546X(78)90068-8
- M. B. Suryanarayana, Remarks on existence theorems for Pareto optimality, Dynamical systems (Proc. Internat. Sympos., Univ. Florida, Gainesville, Fla., 1976) Academic Press, New York, 1977, pp. 335–347. MR 0500390 W. Stadler, A survey of multicriteria optimization, 1977 (preprint).
- Czesław Olech, Existence theorems for optimal problems with vector-valued cost function, Trans. Amer. Math. Soc. 136 (1969), 159–180. MR 234338, DOI 10.1090/S0002-9947-1969-0234338-5
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 244 (1978), 37-65
- MSC: Primary 49A36; Secondary 90A14
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506609-1
- MathSciNet review: 506609