Two-dimensional $\varepsilon$-isometries
HTML articles powered by AMS MathViewer
- by D. G. Bourgin
- Trans. Amer. Math. Soc. 244 (1978), 85-102
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506611-X
- PDF | Request permission
Abstract:
An affirmative answer to the antipodal $\varepsilon$-isometry conjecture is established for 2-dimensional Banach spaces.References
- D. H. Hyers and S. M. Ulam, On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288–292. MR 13219, DOI 10.1090/S0002-9904-1945-08337-2
- D. H. Hyers and S. M. Ulam, Approximate isometries of the space of continuous functions, Ann. of Math. (2) 48 (1947), 285–289. MR 20717, DOI 10.2307/1969171
- D. G. Bourgin, Approximate isometries, Bull. Amer. Math. Soc. 52 (1946), 704–714. MR 17465, DOI 10.1090/S0002-9904-1946-08638-3
- D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385–397. MR 31194, DOI 10.1215/S0012-7094-49-01639-7 —, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 52 (1946), 704-714.
- Richard D. Bourgin, Approximate isometries on finite dimensional Banach spaces, Trans. Amer. Math. Soc. 207 (1975), 309–328. MR 370137, DOI 10.1090/S0002-9947-1975-0370137-4 S. Banach, Théorie des opérations linéaires, Monogr. Mat.PWN, Warsaw, 1932.
- D. G. Bourgin, A generalization of the mapping degree, Canadian J. Math. 26 (1974), 1109–1117. MR 365552, DOI 10.4153/CJM-1974-103-2
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 244 (1978), 85-102
- MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506611-X
- MathSciNet review: 506611