Application of the sector condition to the classification of sub-Markovian semigroups
HTML articles powered by AMS MathViewer
- by Martin L. Silverstein
- Trans. Amer. Math. Soc. 244 (1978), 103-146
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506612-1
- PDF | Request permission
Abstract:
Let ${p_{t}}$, $t > 0$, be a strongly continuous submarkovian semigroup on a real Hilbert space ${L^2}(X, m)$. The measure m is assumed to be excessive and the ${L^2}$ generator A is assumed to satisfy an estimate (the sector condition) which permits the application of Dirichlet spaces (not necessarily symmetric). Other submarkovian semigroups $P_t^ \sim$ with the same local generator and cogenerator and relative to which m is again excessive are classified in terms of generators for processes which live on a suitable boundary.References
- Martin L. Silverstein, The sector condition implies that semipolar sets are quasi-polar, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41 (1977/78), no. 1, 13–33. MR 467934, DOI 10.1007/BF00535011
- Martin L. Silverstein, Symmetric Markov processes, Lecture Notes in Mathematics, Vol. 426, Springer-Verlag, Berlin-New York, 1974. MR 0386032, DOI 10.1007/BFb0073683
- Martin L. Silverstein, Boundary theory for symmetric Markov processes, Lecture Notes in Mathematics, Vol. 516, Springer-Verlag, Berlin-New York, 1976. MR 0451422, DOI 10.1007/BFb0081336
- Minoru Motoo, Application of additive functionals to the boundary problem of Markov processes. Lévy’s system of $U$-processes, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 75–110. MR 0220349
- Hiroshi Kunita, General boundary conditions for multi-dimensional diffusion processes, J. Math. Kyoto Univ. 10 (1970), 273–335. MR 270445, DOI 10.1215/kjm/1250523765
- Masatoshi Fukushima, On boundary conditions for multi-dimensional Brownian motions with symmetric resolvent densities, J. Math. Soc. Japan 21 (1969), 58–93. MR 236998, DOI 10.2969/jmsj/02110058
- Masatoshi Fukushima, Regular representations of Dirichlet spaces, Trans. Amer. Math. Soc. 155 (1971), 455–473. MR 281256, DOI 10.1090/S0002-9947-1971-0281256-1
- Masatoshi Fukushima, Dirichlet spaces and strong Markov processes, Trans. Amer. Math. Soc. 162 (1971), 185–224. MR 295435, DOI 10.1090/S0002-9947-1971-0295435-0
- Masatoshi Fukushima, On transition probabilities of symmetric strong Markov processes, J. Math. Kyoto Univ. 12 (1972), 431–450. MR 341626, DOI 10.1215/kjm/1250523475
- Hiroshi Kunita, Sub-Markov semi-groups in Banach lattices, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) Univ. Tokyo Press, Tokyo, 1970, pp. 332–343. MR 0267412
- G. A. Hunt, Martingales et processus de Markov, Monographies de la Société Mathématique de France, No. 1, Dunod, Paris, 1966 (French). MR 0211453
- G. A. Hunt, Markoff processes and potentials. I, II, Illinois J. Math. 1 (1957), 44–93, 316–369. MR 91349
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Santiago Carrillo-Menendez, Processus de Markov associé à une forme de Dirichlet non symétrique, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1975/76), no. 2, 139–154 (German, with English summary). MR 386030, DOI 10.1007/BF00538354
- Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
- R. S. Phillips, Semi-groups of positive contraction operators, Czechoslovak Math. J. 12(87) (1962), 294–313 (English, with Russian summary). MR 146675, DOI 10.21136/CMJ.1962.100517
- Guido Stampacchia, Èquations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures, No. 16 (Été, vol. 1965, Les Presses de l’Université de Montréal, Montreal, Que., 1966 (French). MR 0251373
- Carlo Miranda, Partial differential equations of elliptic type, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. Second revised edition. Translated from the Italian by Zane C. Motteler. MR 0284700
- Oliver Dimon Kellogg, Foundations of potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 31, Springer-Verlag, Berlin-New York, 1967. Reprint from the first edition of 1929. MR 0222317, DOI 10.1007/978-3-642-86748-4
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 0178246
- Yves Le Jan, Balayage et formes de Dirichlet, Z. Wahrsch. Verw. Gebiete 37 (1976/77), no. 4, 297–319 (French). MR 571671, DOI 10.1007/BF00533422
- S. A. Molčanov and E. Ostrovskiĭ, Symmetric stable processes as traces of degenerate diffusion processes. , Teor. Verojatnost. i Primenen. 14 (1969), 127–130 (Russian, with English summary). MR 0247668
- M. Fukushima, Potential theory of symmetric Markov processes and its applications, Proceedings of the Third Japan-USSR Symposium on Probability Theory (Tashkent, 1975) Lecture Notes in Math., Vol. 550, Springer, Berlin, 1976, pp. 119–133. MR 0494514
- Frank Spitzer, Some theorems concerning $2$-dimensional Brownian motion, Trans. Amer. Math. Soc. 87 (1958), 187–197. MR 104296, DOI 10.1090/S0002-9947-1958-0104296-5
- Masatoshi Fukushima, On the generation of Markov processes by symmetric forms, Proceedings of the Second Japan-USSR Symposium on Probability Theory (Kyoto, 1972) Lecture Notes in Math., Vol. 330, Springer, Berlin, 1973, pp. 46–79. MR 0494513 Yves le Jan, Measures associées à une forme de Dirichlet (preprint). —, Measures associées à une forme de Dirichlet-Applications (preprint).
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 244 (1978), 103-146
- MSC: Primary 60J50
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506612-1
- MathSciNet review: 506612