On the exceptional central simple non-Lie Mal’cev algebras
HTML articles powered by AMS MathViewer
- by Renate Carlsson
- Trans. Amer. Math. Soc. 244 (1978), 173-184
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506614-5
- PDF | Request permission
Abstract:
Malcev algebras belong to the class of binary Lie algebras. Any Lie algebra is a Malcev algebra. In this paper we show that for each seven-dimensional central simple non-Lie Malcev algebra any finite dimensional Malcev module is completely reducible also for positive characteristics. This contrasts with each modular semisimple Lie algebra. As a consequence we get that the classical structure theory for characteristic zero is valid also in the modular case if semisimplicity is replaced by ${G_1}$-separability. The Wedderburn principal theorem is proved for Malcev algebras.References
- Renate Carlsson, Malcev-Moduln, J. Reine Angew. Math. 281 (1976), 199–210 (German). MR 393158, DOI 10.1515/crll.1976.281.199
- Renate Carlsson, The first Whitehead lemma for Malcev algebras, Proc. Amer. Math. Soc. 58 (1976), 79–84. MR 409585, DOI 10.1090/S0002-9939-1976-0409585-9
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- E. N. Kuz′min, Mal′cev algebras and their representations, Algebra i Logika 7 (1968), no. 4, 48–69 (Russian). MR 0252468
- Arthur A. Sagle, Malcev algebras, Trans. Amer. Math. Soc. 101 (1961), 426–458. MR 143791, DOI 10.1090/S0002-9947-1961-0143791-X
- G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40, Springer-Verlag New York, Inc., New York, 1967. MR 0245627, DOI 10.1007/978-3-642-94985-2
- Ernest L. Stitzinger, Malcev algebras with $J_{2}$-potent radical, Proc. Amer. Math. Soc. 50 (1975), 1–9. MR 374224, DOI 10.1090/S0002-9939-1975-0374224-1
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 244 (1978), 173-184
- MSC: Primary 17A30; Secondary 17D10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506614-5
- MathSciNet review: 506614