$R$-separation of variables for the four-dimensional flat space Laplace and Hamilton-Jacobi equations
HTML articles powered by AMS MathViewer
- by E. G. Kalnins and Willard Miller
- Trans. Amer. Math. Soc. 244 (1978), 241-261
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506618-2
- PDF | Request permission
Abstract:
All A-separable orthogonal coordinate systems for the complex equations $\Sigma _{i = 1}^4 {{\partial _{ii}}\Psi = 0}$ and $\Sigma _{i = 1}^4 {{{({\partial _i}W)}^2} = 0}$ are classified and it is shown that these equations separate in exactly the same systems.References
- E. G. Kalnins and W. Miller Jr., Lie theory and the wave equation in space-time. I. The Lorentz group, J. Mathematical Phys. 18 (1977), no. 1, 1–16. MR 507308, DOI 10.1063/1.523130
- E. G. Kalnins and W. Miller Jr., Lie theory and the wave equation in space-time. I. The Lorentz group, J. Mathematical Phys. 18 (1977), no. 1, 1–16. MR 507308, DOI 10.1063/1.523130 —, Orthogonal separable coordinates for the Laplace-Beltrami operator on the complex four-sphere (preprint). —, Lie theory and the wave equation in space time. V: R-separable solutions of the wave equation, J. Mathematical Phys. 18 (1977), 1741-1751.
- E. G. Kalnins and W. Miller Jr., Lie theory and the wave equation in space-time. I. The Lorentz group, J. Mathematical Phys. 18 (1977), no. 1, 1–16. MR 507308, DOI 10.1063/1.523130 M. Bêcher, Die Reihentwickelungen der Potentialtheorie, Leipzig, 1894.
- Luther Pfahler Eisenhart, Stackel systems in conformal Euclidean space, Ann. of Math. (2) 36 (1935), no. 1, 57–70. MR 1503208, DOI 10.2307/1968664
- C. P. Boyer, E. G. Kalnins, and Willard Miller Jr., $R$-separable coordinates for three-dimensional complex Riemannian spaces, Trans. Amer. Math. Soc. 242 (1978), 355–376. MR 496814, DOI 10.1090/S0002-9947-1978-0496814-5
- Willard Miller Jr., Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, Vol. 4, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1977. With a foreword by Richard Askey. MR 0460751
- Parry Moon and Domina Eberle Spencer, Theorems on separability in Riemannian $n$-space, Proc. Amer. Math. Soc. 3 (1952), 635–642. MR 49439, DOI 10.1090/S0002-9939-1952-0049439-7 P. Stäckel, Über die integration der Hamilton-Jacobischen differentialgleichung mittels separation der variabelen, Halle, 1891.
- Luther Pfahler Eisenhart, Separable systems of Stackel, Ann. of Math. (2) 35 (1934), no. 2, 284–305. MR 1503163, DOI 10.2307/1968433
- Parry Moon and Domina Eberle Spencer, Separability conditions for the Laplace and Helmholtz equations, J. Franklin Inst. 253 (1952), 585–600. MR 49437, DOI 10.1016/0016-0032(52)90682-0
- Luther Pfahler Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, N. J., 1949. 2d printing. MR 0035081
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 244 (1978), 241-261
- MSC: Primary 22E70; Secondary 33A75, 35A25, 53B20
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506618-2
- MathSciNet review: 506618