Algebraic structures for $\bigoplus \sum _{n\geq 1}L^{2}(Z/n)$ compatible with the finite Fourier transform
HTML articles powered by AMS MathViewer
- by L. Auslander and R. Tolimieri
- Trans. Amer. Math. Soc. 244 (1978), 263-272
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506619-4
- PDF | Request permission
Abstract:
Let ${Z / n}$ denote the integers $\bmod n$ and let ${\mathcal {F}_n}$ denote the finite Fourier transform on ${L^2}({Z / n})$. We let $\oplus \Sigma {{\mathcal {F}_n}} = F$ operate on $\oplus \Sigma {L^2}({Z / n})$ and show that $\oplus \Sigma {L^2}({Z / n})$ can be given a graded algebra structure (with no zero divisors) such that $\mathcal {F}(fg) = \mathcal {F}(f)\mathcal {F}(g)$. We do this by establishing a natural isomorphism with the algebra of theta functions with period i. In addition, we find all algebra structures on $\oplus \Sigma {L^2}({Z / n})$ satisfying the above condition.References
- L. Auslander and J. Brezin, Translation-invariant subspaces in $L^{2}$ of a compact nilmanifold. I, Invent. Math. 20 (1973), 1–14. MR 322100, DOI 10.1007/BF01405260
- Louis Auslander and Richard Tolimieri, Abelian harmonic analysis, theta functions and function algebras on a nilmanifold, Lecture Notes in Mathematics, Vol. 436, Springer-Verlag, Berlin-New York, 1975. MR 0414785, DOI 10.1007/BFb0069850
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 244 (1978), 263-272
- MSC: Primary 22E25; Secondary 14K20, 43A80
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506619-4
- MathSciNet review: 506619