An asymptotic double commutant theorem for $C^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by Donald W. Hadwin
- Trans. Amer. Math. Soc. 244 (1978), 273-297
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506620-0
- PDF | Request permission
Abstract:
An asymptotic version of von Neumann’s double commutant theorem is proved in which ${C^{\ast }}$-algebras play the role of von Neumann algebras. This theorem is used to investigate asymptotic versions of similarity, reflexivity, and reductivity. It is shown that every nonseparable, norm closed, commutative, strongly reductive algebra is selfadjoint. Applications are made to the study of operators that are similar to normal (subnormal) operators. In particular, if T is similar to a normal (subnormal) operator and $\pi$ is a representation of the ${C^{\ast }}$-algebra generated by t, then $\pi (T)$ is similar to a normal (subnormal) operator.References
- Charles A. Akemann, The general Stone-Weierstrass problem, J. Functional Analysis 4 (1969), 277–294. MR 0251545, DOI 10.1016/0022-1236(69)90015-9
- Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu, Strongly reductive operators are normal, Acta Sci. Math. (Szeged) 38 (1976), no. 3-4, 261–263. MR 433241
- Constantin Apostol, Ciprian Foiaş, and Dan Voiculescu, On strongly reductive algebras, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 6, 633–641. MR 417804
- Constantin Apostol and Joseph Stampfli, On derivation ranges, Indiana Univ. Math. J. 25 (1976), no. 9, 857–869. MR 412890, DOI 10.1512/iumj.1976.25.25067
- William Arveson, Interpolation problems in nest algebras, J. Functional Analysis 20 (1975), no. 3, 208–233. MR 0383098, DOI 10.1016/0022-1236(75)90041-5
- William G. Bade, Weak and strong limits of spectral operators, Pacific J. Math. 4 (1954), 393–413. MR 63567, DOI 10.2140/pjm.1954.4.393
- Errett Bishop, Spectral theory for operators on a Banach space, Trans. Amer. Math. Soc. 86 (1957), 414–445. MR 100789, DOI 10.1090/S0002-9947-1957-0100789-4
- Arlen Brown, Che Kao Fong, and Donald W. Hadwin, Parts of operators on Hilbert space, Illinois J. Math. 22 (1978), no. 2, 306–314. MR 500254
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9
- James A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509–512. MR 278099, DOI 10.1090/S0002-9939-1971-0278099-7
- J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89–93. MR 358390, DOI 10.1016/0024-3795(75)90099-3
- R. G. Douglas, On operators similar to normal operators, Rev. Roumaine Math. Pures Appl. 14 (1969), 193–197. MR 246152
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893 N. Dunford and J. T. Schwartz, Linear operators, Part III, Interscience, New York, 1971. J. Dyer and P. Porcelli, Concerning the invariant subspace problem, Notices Amer. Math. Soc. 17 (1970), 788.
- John Ernest, Charting the operator terrain, Mem. Amer. Math. Soc. 6 (1976), no. 171, iii+207. MR 463941, DOI 10.1090/memo/0171
- Ralph Gellar and Lavon Page, Limits of unitarily equivalent normal operators, Duke Math. J. 41 (1974), 319–322. MR 338817 D. W. Hadwin, Closures of unitary equivalence classes, Doctoral thesis, Indiana Univ., 1975.
- Donald W. Hadwin, An operator-valued spectrum, Indiana Univ. Math. J. 26 (1977), no. 2, 329–340. MR 428089, DOI 10.1512/iumj.1977.26.26025
- Donald W. Hadwin, Approximating direct integrals of operators by direct sums, Michigan Math. J. 25 (1978), no. 1, 123–127. MR 500245
- Donald W. Hadwin, Continuous functions of operators; a functional calculus, Indiana Univ. Math. J. 27 (1978), no. 1, 113–125. MR 467367, DOI 10.1512/iumj.1978.27.27010
- Donald W. Hadwin, Fuglede’s theorem and limits of spectral operators, Proc. Amer. Math. Soc. 68 (1978), no. 3, 365–368. MR 493344, DOI 10.1090/S0002-9939-1978-0493344-7
- P. R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283–293. MR 234310
- P. R. Halmos, Limits of shifts, Acta Sci. Math. (Szeged) 34 (1973), 131–139. MR 338812
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- K. J. Harrison, Strongly reductive operators, Acta Sci. Math. (Szeged) 37 (1975), no. 3-4, 205–212. MR 388129
- Domingo A. Herrero, Quasisimilar operators with different spectra, Acta Sci. Math. (Szeged) 41 (1979), no. 1-2, 101–118. MR 534503
- Alan Lambert, Strictly cyclic operator algebras, Pacific J. Math. 39 (1971), 717–726. MR 310664, DOI 10.2140/pjm.1971.39.717
- Alan Lambert, Strictly cyclic operator algebras, Pacific J. Math. 39 (1971), 717–726. MR 310664, DOI 10.2140/pjm.1971.39.717
- Robert Moore, An asymptotic Fuglede theorem, Proc. Amer. Math. Soc. 50 (1975), 138–142. MR 370247, DOI 10.1090/S0002-9939-1975-0370247-7
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682, DOI 10.1007/978-3-642-65574-6 E. J. Rosenthal, Strictly cyclic operators and invariant subspaces, Ph.D. thesis, Univ. of Calif., Berkeley, 1977.
- A. F. Ruston, A note on the Caradus class ${\mathfrak {F}}$ of bounded linear operators on a complex Banach space, Canadian J. Math. 21 (1969), 592–594. MR 240653, DOI 10.4153/CJM-1969-066-6 W. W. Saffern, Subscalar operators, Dissertation, Columbia Univ., 1962.
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511–517. MR 192365, DOI 10.2140/pjm.1966.17.511
- A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970/71), 777–788. MR 287352, DOI 10.1512/iumj.1971.20.20062 J. G. Stampfli, On operators related to normal operators, Ph.D. thesis, Univ. of Michigan, 1959.
- W. Forrest Stinespring, Positive functions on $C^*$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–216. MR 69403, DOI 10.1090/S0002-9939-1955-0069403-4
- Béla de Sz. Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Univ. Szeged. Sect. Sci. Math. 11 (1947), 152–157. MR 22309 T. R. Turner, Double commutants of singly generated operator algebras, Doctoral thesis, Univ. of Michigan, 1971.
- T. Rolf Turner, Double commutants of algebraic operators, Proc. Amer. Math. Soc. 33 (1972), 415–419. MR 291863, DOI 10.1090/S0002-9939-1972-0291863-4
- T. Rolf Turner, Erratum: “Double commutants of algebraic operators” (Proc. Amer. Math. Soc. 33 (1972), 415–419), Proc. Amer. Math. Soc. 45 (1974), 466. MR 343081, DOI 10.1090/S0002-9939-1974-0343081-0
- Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113. MR 415338
- Dan Voiculescu, Norm-limits of algebraic operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 371–378. MR 343082 J. von Neumann, Zur Algebra der Funktional Operatoren und Theorie der normalen Operatoren, Math. Ann. 102 (1929), 370-427.
- John Wermer, Commuting spectral measures on Hilbert space, Pacific J. Math. 4 (1954), 355–361. MR 63564, DOI 10.2140/pjm.1954.4.355
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 244 (1978), 273-297
- MSC: Primary 47A99; Secondary 46L05, 47B47
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506620-0
- MathSciNet review: 506620