Some $3$-manifolds which admit Klein bottles
HTML articles powered by AMS MathViewer
- by Paik Kee Kim
- Trans. Amer. Math. Soc. 244 (1978), 299-312
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506621-2
- PDF | Request permission
Abstract:
Consider a closed, orientable, irreducible 3-manifold M with $\left | {{\pi _1}(M)} \right | < \infty$, in which a Klein bottle can be embedded. We present a classification of the spaces M and show that, if ${\pi _1}(M)$ is cyclic, then M is homeomorphic to a lens space. Note that all surfaces of even genus can be embedded in each space M. We also classify all free involutions on lens spaces whose orbit spaces contain Klein bottles.References
- Glen E. Bredon and John W. Wood, Non-orientable surfaces in orientable $3$-manifolds, Invent. Math. 7 (1969), 83โ110. MR 246312, DOI 10.1007/BF01389793
- Paik Kee Kim, $\textrm {PL}$ involutions on lens spaces and other $3$-manifolds, Proc. Amer. Math. Soc. 44 (1974), 467โ473. MR 375363, DOI 10.1090/S0002-9939-1974-0375363-0
- Paik Kee Kim and Jeffrey L. Tollefson, PL involutions of fibered $3$-manifolds, Trans. Amer. Math. Soc. 232 (1977), 221โ237. MR 454981, DOI 10.1090/S0002-9947-1977-0454981-2
- Kyung Whan Kwun, Scarcity of orientation-reversing $\textrm {PL}$ involutions of lens spaces, Michigan Math. J. 17 (1970), 355โ358. MR 279814
- K. W. Kwun, Sense-preserving $\textrm {PL}$ involutions of some lens spaces, Michigan Math. J. 20 (1973), 73โ77. MR 310865
- Kyung Whan Kwun and Jeffrey L. Tollefson, Extending a PL involution of the interior of a compact manifold, Amer. J. Math. 99 (1977), no.ย 5, 995โ1001. MR 470966, DOI 10.2307/2373996
- W. Mangler, Die Klassen von topologischen Abbildungen einer geschlossenen Flรคche auf sich, Math. Z. 44 (1939), no.ย 1, 541โ554 (German). MR 1545786, DOI 10.1007/BF01210672
- C. D. Papakyriakopoulos, On Dehnโs lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1โ26. MR 90053, DOI 10.2307/1970113
- John Stallings, On the loop theorem, Ann. of Math. (2) 72 (1960), 12โ19. MR 121796, DOI 10.2307/1970146
- John Stallings, On fibering certain $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp.ย 95โ100. MR 0158375
- Yoko Tao, On fixed point free involutions of $S^{1}\times S^{2}$, Osaka Math. J. 14 (1962), 145โ152. MR 140092
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56โ88. MR 224099, DOI 10.2307/1970594
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 244 (1978), 299-312
- MSC: Primary 57N10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0506621-2
- MathSciNet review: 506621