The eigenvalue spectrum as moduli for flat tori
HTML articles powered by AMS MathViewer
- by Scott Wolpert
- Trans. Amer. Math. Soc. 244 (1978), 313-321
- DOI: https://doi.org/10.1090/S0002-9947-1978-0514879-9
- PDF | Request permission
Abstract:
A flat torus T carries a natural Laplace Beltrami operator. It is a conjecture that the spectrum of the Laplace Beltrami operator determines T modulo isometries. We prove that, with the exception of a subvariety in the moduli space of flat tori, this conjecture is true. A description of the subvariety is given.References
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313, DOI 10.1007/BFb0064643
- M. Berger, Geometry of the spectrum. I, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973) Amer. Math. Soc., Providence, R.I., 1975, pp. 129–152. MR 0383459
- J. W. S. Cassels, An introduction to the geometry of numbers, Classics in Mathematics, Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition. MR 1434478
- I. M. Gel′fand, M. I. Graev, and I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. Translated from the Russian by K. A. Hirsch. MR 0233772
- R. C. Gunning, Lectures on modular forms, Annals of Mathematics Studies, No. 48, Princeton University Press, Princeton, N.J., 1962. Notes by Armand Brumer. MR 0132828, DOI 10.1515/9781400881666
- H. P. McKean, Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 (1972), 225–246. MR 473166, DOI 10.1002/cpa.3160250302
- J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542. MR 162204, DOI 10.1073/pnas.51.4.542
- Scott Wolpert, The eigenvalue spectrum as moduli for compact Riemann surfaces, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1306–1308. MR 499329, DOI 10.1090/S0002-9904-1977-14425-X —, The length spectrum as moduli for compact Riemann surfaces (to appear).
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 244 (1978), 313-321
- MSC: Primary 53C99; Secondary 58G99
- DOI: https://doi.org/10.1090/S0002-9947-1978-0514879-9
- MathSciNet review: 0514879