A noncommutative probability theory
HTML articles powered by AMS MathViewer
- by S. P. Gudder and R. L. Hudson
- Trans. Amer. Math. Soc. 245 (1978), 1-41
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511398-0
- PDF | Request permission
Abstract:
A noncommutative probability theory is developed in which no boundedness, finiteness, or “tracial” conditions are imposed. The underlying structure of the theory is a “probability algebra” $(\mathcal {a},\omega )$ where $\mathcal {a}$ is a *-algebra and $\omega$ is a faithful state on $\mathcal {a}$. Conditional expectations and coarse-graining are discussed. The bounded and unbounded commutants are considered and commutation theorems are proved. Two classes of probability algebras, which we call closable and symmetric probability algebras are shown to have important regularity properties. The canonical algebra of quantum mechanics is considered in some detail and a strong commutation theorem is proven for this case. Moreover, in this case, isotropic normal states, KMS states, and stable states are defined and characterized.References
- Leo Breiman, Probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. MR 0229267
- C. D. Cushen and R. L. Hudson, A quantum-mechanical central limit theorem, J. Appl. Probability 8 (1971), 454–469. MR 289082, DOI 10.2307/3212170
- Alfons van Daele, A new approach to the Tomita-Takesaki theory of generalized Hilbert algebras, J. Functional Analysis 15 (1974), 378–393. MR 0346539, DOI 10.1016/0022-1236(74)90029-9 J. Dixmier, Les algèebres d’opérateurs dans l’espace Hilbertien (Algèebres de von Neumann), 2nd ed., Gauthier-Villars, Paris, 1969.
- H. A. Dye, The Radon-Nikodým theorem for finite rings of operators, Trans. Amer. Math. Soc. 72 (1952), 243–280. MR 45954, DOI 10.1090/S0002-9947-1952-0045954-5 G. G. Emch, Algebraic methods in statistical mechanics and quantum field theory, Wiley, New York, 1972.
- I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831
- S. Gudder and J.-P. Marchand, Noncommutative probability on von Neumann algebras, J. Mathematical Phys. 13 (1972), 799–806. MR 302108, DOI 10.1063/1.1666054
- S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math. 58 (1975), no. 2, 427–436. MR 390719, DOI 10.2140/pjm.1975.58.427
- Paul R. Halmos and L. J. Savage, Application of the Radon-Nikodym theorem to the theory of sufficient statistics, Ann. Math. Statistics 20 (1949), 225–241. MR 30730, DOI 10.1214/aoms/1177730032
- M. A. Naĭmark, Normed algebras, 3rd ed., Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics, Wolters-Noordhoff Publishing, Groningen, 1972. Translated from the second Russian edition by Leo F. Boron. MR 0438123
- M. Nakamura, M. Takesaki, and H. Umegaki, A remark on the expectations of operator algebras, K\B{o}dai Math. Sem. Rep. 12 (1960), 82–90. MR 250084, DOI 10.2996/kmj/1138844264
- Robert T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85–124. MR 283580, DOI 10.1007/BF01646746 M. Reed and B. Simon, Methods of mathematical physics. Vol. 1 : Functional analysis, Academic Press, New York, 1972.
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 27, Springer-Verlag, Berlin-New York, 1970. Second printing. MR 0257800, DOI 10.1007/978-3-662-35155-0
- I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401–457. MR 54864, DOI 10.2307/1969729
- M. Takesaki, Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, Vol. 128, Springer-Verlag, Berlin-New York, 1970. MR 0270168, DOI 10.1007/BFb0065832
- Hisaharu Umegaki, Conditional expectation in an operator algebra. II, Tohoku Math. J. (2) 8 (1956), 86–100. MR 90789, DOI 10.2748/tmj/1178245011
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 1-41
- MSC: Primary 46L55; Secondary 46K99, 81B99
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511398-0
- MathSciNet review: 511398