Explosions in completely unstable flows. I. Preventing explosions
HTML articles powered by AMS MathViewer
- by Zbigniew Nitecki
- Trans. Amer. Math. Soc. 245 (1978), 43-61
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511399-2
- PDF | Request permission
Abstract:
Several conditions are equivalent to the property that a flow (on an open manifold) and its ${C^0}$ perturbations have only wandering points. These conditions are: (i) there exists a strong Liapunov function; (ii) there are no generalized recurrent points in the sense of Auslander; (iii) there are no chain recurrent points, in the sense of Conley; (iv) there exists a fine sequence of filtrations; (v) relative to some metric; the flow is the gradient flow of a function without critical points. We establish these equivalences, and consider a few questions related to structural stability when all orbits wander.References
- Joseph Auslander, Generalized recurrence in dynamical systems, Contributions to Differential Equations 3 (1964), 65–74. MR 162238
- J. Auslander and P. Seibert, Prolongations and stability in dynamical systems, Ann. Inst. Fourier (Grenoble) 14 (1964), no. fasc. 2, 237–267. MR 176180, DOI 10.5802/aif.179
- N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, Springer-Verlag, New York-Berlin, 1970. MR 0289890, DOI 10.1007/978-3-642-62006-5 C. Conley, The gradient structure of a flow. I, unpublished IBM Research Report, Yorktown Heights.
- J. Dugundji and H. A. Antosiewicz, Parallelizable flows and Lyapunov’s second method, Ann. of Math. (2) 73 (1961), 543–555. MR 123064, DOI 10.2307/1970316
- M. Krych, Note on structural stability of open manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1033–1038 (English, with Russian summary). MR 397792
- P. Mendes, On stability of dynamical systems on open manifolds, J. Differential Equations 16 (1974), 144–167. MR 345137, DOI 10.1016/0022-0396(74)90031-X
- V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, Princeton Mathematical Series, No. 22, Princeton University Press, Princeton, N.J., 1960. MR 0121520 Z. Nitecki, Explosions in completely unstable dynamical systems, in Dynamical systems, Proc. Univ. Florida Internat. Sympos., Academic Press, New York, 1977.
- Zbigniew Nitecki, Explosions in completely unstable flows. II. Some examples, Trans. Amer. Math. Soc. 245 (1978), 63–88. MR 511400, DOI 10.1090/S0002-9947-1978-0511400-6
- Z. Nitecki and M. Shub, Filtrations, decompositions, and explosions, Amer. J. Math. 97 (1975), no. 4, 1029–1047. MR 394762, DOI 10.2307/2373686
- J. Palis, A note on $\Omega$-stability, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 221–222. MR 0270387
- M. Shub and S. Smale, Beyond hyperbolicity, Ann. of Math. (2) 96 (1972), 587–591. MR 312001, DOI 10.2307/1970826
- Floris Takens and Warren White, Vector fields with no nonwandering points, Amer. J. Math. 98 (1976), no. 2, 415–425. MR 418163, DOI 10.2307/2373895
- F. Wesley Wilson Jr., Smoothing derivatives of functions and applications, Trans. Amer. Math. Soc. 139 (1969), 413–428. MR 251747, DOI 10.1090/S0002-9947-1969-0251747-9
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 43-61
- MSC: Primary 58F10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511399-2
- MathSciNet review: 511399