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EXPLOSIONS IN COMPLETELY UNSTABLE FLOWS. II

SOME EXAMPLES

BY

ZBIGNIEW NTTECKI

Abstract. A dynamical system with all points wandering is "explosive" if

some C° perturbation has nonwandering points. It is known that the plane

admits no explosive cascades or flows; in this paper, examples are con-

structed to show that all open manifolds except R ' and R2 admit explosive

flows (and hence cascades).

A dynamical system is completely unstable if its nonwandering set is

empty-that is, if every point has a neighborhood whose images under the

action of the dynamical system are eventually disjoint from it. Several authors

([5], [7], [12]) have observed the phenomenon of "explosiveness"-that a

completely unstable dynamical system can have perturbations which are not

completely unstable. The easiest examples arise from systems on compact

manifolds which have "ß-explosions", by deleting the nonwandering set from

the phase space. This kind of construction, however, results in examples on a

restricted class of phase spaces. Mendes [7] has shown, as a consequence of

the Brouwer translation theorem, that such "explosive" examples do not occur

in the plane, R2; but he has also shown how the "deletion" idea can be used

to construct an explosive diffeomorphism of R3. Takens and White [12] find,

on any manifold, a generic set of flows, among which the completely unstable

flows are nonexplosive. Yet the question remains, which manifolds offer a

topological obstruction to explosiveness-that is, where besides the plane is

the "generic" situation actually the "general" situation?

In this paper, we show that the plane is atypical in this respect. We

construct examples that prove the following result, announced in the note [8].

Definition. A flow <j> is C -explosive if ß(<i>) = 0 but every neighborhood

of </> (in the strong Cr topology on flows) contains flows with ß(^) ¥= 0.

Theorem. If M is an open manifold (noncompact, connected, finite-dimen-

sional, paracompact, without boundary) not homeomorphic to either Rx or R2,

then there exists a Cr-explosive flow on M.

The proof treats three distinct cases:
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(i) dim M > 3,
(ii) M = X — K, where A" is a closed surface and K is a closed subset,

(iii) dim M = 2 and M does not embed in any closed surface.

We will treat these cases in the order above, but will begin with a specific

example which enters the construction.

The author would like to thank the referee for helpful comments on this

paper and its companion [9], and to acknowledge with pleasure several

conversations with R. Devaney on this material.

1. A cylindrical example. An example much like the following is sketched

by Takens and White [12]; we shall treat it in some detail before using it in

our general constructions.

The phase space of this example is the infinite cylinder

M - R X S1

which we can picture embedded in R3 as the surface

x = cos 9,   y — sin 9,   z = z.

The number "z" and the angle "9" serve as a kind of global coordinate

system on M.

Consider the flow defined by the system of equations

i = cos0,       9 = sin2 9. (1)

There are no equilibria; the integral curves are given by the formula

z + csc 9 = constant (2a)

together with the two vertical lines

9 = 0, (2b)

9 = m. (2c)

The flow is upward (z increasing) along (2b) and downward along (2c).

These lines divide the cylinder into two invariant strips, on each of which

the foliation by integral curves forms a "Reeb component". We note that

every orbit in the strip 0 < 9 < m is negatively asymptotic to (2b) and

positively asymptotic to (2c)

lim   9(t) = 0,      lim   9(t) = m,       0 < 9(0) < m,
t—» — OO /—»+00

while in the strip m < 9 < 2m, orbits are positively asymptotic to (2b) and

negatively asymptotic to (2c):

lim    9(t) = ir,      lim    9(t) - 2sr,       m < 9(0) < 2m.
t—» — 00 /—»+00

Thus, the interior of each strip is wandering; on the other hand, the two

vertical lines are wandering because any orbit leaving a neighborhood of one

of the lines eventually flows near the other line, and near these lines the

function "z" is strictly monotone along orbits. The phase portrait is sketched

in Figure 1.
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Figure 1

System (1)

It is clear, however, that a slight "push" in the direction of increasing 9 can

produce periodic orbits. For example, if e ¥* 0 is a small constant, the

perturbed flow

z = cos 9,       9 = sin2 9 + e2, (3e)

has integral curves of the form

e tan[e(z — z0)] = sin 9.

We claim these represent periodic orbits. On one hand, 9 > e2 everywhere, so

that 9 ranges over all real values along any orbit. On the other hand, since

|sin 9\ < 1, we have

tan \e(z - z0)\ < 1/e

so that the quantity inside the absolute value is confined, along any orbit, to a

single branch of the arc tangent. Thus, as 9 goes from 0 to 2w, z must return

to its original value, and the orbit is periodic.

Of course, (3e) is only a uniform (Cr) perturbation of (1). But if the

constant "e" is replaced by a function e(9, z) which is positive near the two

lines, then perturbations in any (C) Whitney neighborhood of (1) can be

tailored to have periodic orbits. While the analytic formulae are more

involved in this case, the geometric behavior, sketched in Figure 2, is clear.
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Figure 2

Perturbation of (1)

For the purposes of our construction in the next section, we prove the

following bifurcation theorem for our example:

Lemma 1. The flow (1) is homotopic, through completely unstable flows, to the

parallel flow

z = \,       9 = 0. (4)

Proof. Our basic observation is that the vectorfield (1) is really a function

of just cos 9, so a homotopy of cos 9 to the constant function "1", keeping

invariant the points 9 = 0 where cos 9 = 1, will give us the desired bifurca-

tion.

For example, consider the "convex combination" homotopy for cos 9. This

yields the one-parameter family of vectorfields defined by

z = X + (1 - X) cos 9,

9 = 1 -[X + (1 -A)cos0]2

= (1 - X)[sin2 9 + X(l - cos 9)2]. (5X)

Note that when X = 0, (5X) is (1), while when X = 1, (5A) is (4). We need,

then, to show that for 0 < X < 1, (5\) is a completely unstable flow.

We note first that there are no equilibria, because for each X,

(zf+9= 1.
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Furthermore, independently of X, the vectorfield for 9 = 0 is

z = \,       9 = 0

so that the line (2b) remains an orbit for all X.

Now, consider the strip 0 < 9 < 2m and any intermediate X, 0 < X < 1.

Since

|i|<l

we have (for 0 < 9 < 2tt and 0 < X < 1)

9= 1 -(i)2>0.

Since 9 is independent of z, this implies that all orbits in this strip satisfy

lim   9(t) = 0, lim   9(t) = 2m
t—» — OO /—» + 00

and every orbit in the open strip wanders. Furthermore, since i is near 1 for

points near 9 = 0, every orbit satisfies

lim   z(z)= -oo, lim   z(t) = +oo       (0 < X)
t—» — 00 t—» + oo

and thus every orbit separates the strip into two invariant open sets. We will

show that the point P: z = 0, 9 = 0 wanders: pick any orbit 0 in the open

strip. Since it is a closed subset of M, and P does not belong to it, we can take

0 < e < dist(.P, 0 ) and consider the disc

Be= {(z,9)EM\\z\<e, \9\<e],

which is disjoint from 0. The line 9 = 0 separates Be into two sets,

Be+ = {(z, 9) E M\ \z\ < e, 0 < 9 < e),

B- = {(z, 9) EM\ \z\< e,-e<9<0]

= {(z, 9) E M\\z\< e,2m- e<9 < 2ir}.

The orbits of Be+ and B~ are separated from each other by the line 0 = 0

and the orbit © ; on the other hand, since z is strictly increasing near 9 = 0,

every point of Bt leaves Bc and, by the limit behavior of 9 and z, never

reenters Be.

Thus, Be is a wandering neighborhood of P, and for each X, (5X) is

completely unstable. This gives us the desired bifurcation.

2. Case 1. dim M > 3. Using (5X), we will now construct explosive flows on

all open manifolds of dimension 3 or more. The idea is to use Lemma 1 to

embed the example (1) in a flow on a "rod" which is parallel on the

boundary, and then to glue this rod into any flow with an orbit that is

unbounded in forward and backward time. Most of the technical work is

contained in two lemmas.

For convenience, we establish some notation. Suppose n > 3. Let U denote
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the closed set in R"

U={x = (xx, ..., x„)|x2 + • • • + x2_, < 1}.

Note that U is diffeomorphic to £>n_1 X R, where D"~l denotes the closed

unit disc in Ä""1; its "core" is the curve

r = {x = (x„ . . ., x„)|x, = • • • = x„_, = 0}.

A "thickened core" is the closed neighborhood of T

G = (x = (x„ . . ., x„)|x2 + • . • + x„2 < \ }.

Finally, consider the cylinder embedded in G,

C = jx = (x„ . . . , x„)|x2 + x2 = -j ,x3 = • • • - x„_! = Oj.

Lemma 2. There exists a completely unstable C°° flow on U such that

(i)IfxE U - G, x,. = Ofor i = 1, . . . , n - 1 and xn = 1.

(ii) C is an invariant set on which the flow is conjugate to example (1) above.

Proof. We will find it easier to work in "cylindrical" coordinates: let ^:

R "->/?" be the transformation

}p(r, 9, z,ux, . . . , u„_3) = (r cos 9, r sin 9, ux, . . ., u„_3, z).

Note that

U = ifs{0 < 9 <2m,0 < r,r2 + u2 +■■ ■ + u2_3 < l},

G = i|/{0 < 9 <2m,0 < r,r2 + u2+ ■■ ■ + u2_3 <\),

C = ^{0 < 9 <2m,r = {-,ux = ■ ■ ■ = un_3 = 0}(

r = ^{0 < 9 < 2ir, r = 0, ux = • • • = un_3 = 0).

Now, pick a C °° function

X = X(r, ux,..., un_3)

such that

0 < X < 1,

X = 1    for r2 + u\ + • • • + «2_3 < \,

X = 1    for r2 + u\ + • • • + u2_3 > \,

X = 0   for r = j, ux = • • • = u„_3 = 0.

We note that X is independent of 9 and z, by definition.

We define a vectorfield V on the domain of \¡/ by
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r = 0,

9 = (1 - X)[sin2 9 + X(l - cos 9)2],

ii, = 0,       / = 1, . . ., n - 3,

i = X - (1 - X)cos 9.

We note that this defines a C00 vectorfield V on_the range of ip; the only

possible problem is at r = 0, but near r = 0, F is constant. V certainly

satisfies the requirements of our lemma.

Lemma 3. Given any C00 vectorfield Y, defined on U,for which Y is a single

integral curve, there exists a new C°° vectorfield Z, defined on U, satisfying the

following:

(i) Near the boundary of U,Y= Z.

(ii) The restriction of Z to U — G is conjugate to Y\(U - Y), and the

conjugating map is the identity near the boundary of U.

(iii) Z | G agrees with the vectorfield V in Lemma 2.

Proof. If Y happens to be parallel to Y on G (i.e., if x, = 0, / = 1,..., n

— 1, and x„ = 1 on G), then we can simply define Z to equal Y on U — G

and V on G; since Y agrees with V slightly inside G, this makes Z C°°.

Similarly, if Y has an invariant closed neighborhood P c G on which the

flow is conjugate to the parallel flow on G, then we can find a diffeomor-

phism of U which equals the identity near the boundary of U, preserves Y,

and maps P onto G via the conjugacy; then we can apply the previous

sentence to the vectorfield induced by this diffeomorphism.

Thus, our problem reduces to the

Claim. There exists aC°° vectorfield Y on U such that

(a) T has a neighborhood P c G on which the flow of Y is conjugate to a

parallel flow on G.

(b) Y\(U — P) is conjugate to Y\(U — Y), and the conjugacy is the identity

near the boundary of U.

To construct Y, we note that Y can be covered by "flowboxes" of Y, and so

it is possible to find a closed neighborhood Q of Y, not necessarily invariant

under the flow of Y, but on which the vectorfield Y is conjugate to a constant

vectorfield. Thus, there is a diffeomorphism h of Q onto a neighborhood of

{0} X Ä in Ä"~ ' X R taking Y to {0} X R, and taking Y to the vectorfield

h\ = 0       (i - 1, . . . , n - 1)

K = \-
We adopt "polar" coordinates in R"~l by defining

r2 = h2+...   +h2 _if

9 = (hx/r,...,hn_x/r)ES"-2       (r¥=0).
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By cutting down Q, we can assume that the image of h has the form

Qx = {(r, 9, hn)ERX Sn~2 XR\r< a(hn), 9 ES"-1}

where a(hn) > 0 is a C00 function. Now, pick a C00 "bump function" ß (r, h„)

such that

(a)/? = 0for/->(3/4)a(/U,

(b)/?=lforr<(l/2)a(An),

(c) ß' < 0 for (l/2)a(A„) < r_< Q/4)a(hn).

We remark that the vectorfield Yx defined in polar coordinates by

r = ra'(hn)ß(r,hn)/a(h„),

9 = 0,       hn = \,

has the following properties:

(a) For r > (3/4)a(hn), Yx is parallel to the /j„-axis (so agrees with the

image of Y).

(b) For r < (\/2)a(h„), the integral curves of Yx have the form

r(hn) = (constant) X a(hn),       9 = constant.

(c) Yx is well defined as a C°° vectorfield on Qx.

The first property is clear; to see (b), we note that in the region r < (3/4)a,

we have ß = 1, so

r'/r = a'/ a.

To see (c), we rewrite Y, in cartesian coordinates as

Ä, = aX/0/K^„)V«(U       hn=l.
Now a consequence of (b) is that the set

Px = {r < a/2}

is a neighborhood of Y, inside Qx, invariant under the flow of Yx. Thus if we

pull Yx on Qx back to a vectorfield Y on Q c G, its germ at the boundary of

Q agrees with the original vectorfield Y, so we can define Y to equal Y off Q.

The flow of Y then satisfies statement (a) of our claim, but it is not clear that

our new vectorfield is conjugate on the complement of this neighborhood to

Y, because a Y-orbit entering Q may be connected by Y to a different Y-orbit

upon leaving Q. Unless Y is separated from the Auslander recurrent set (in

which case the claim is unnecessary), this can change the conjugacy type of

the flow.

However, we canjnsure that an orbit entering Q leaves Q at the same point

under both Y and Y by making a further assumption on the functions a and

ß above: it is clear that by further shrinking Q, we can assume that

(i)a(-h)= a(h) for all h,

(ii) a'(h) < 0 for h > 0,

and then we can pick ß so that
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(iii) ß(r, - h) = ß(r, h) for all h.

In this case, an examination of the formulas reveals that the vectorfield Y, is

carried into its negative by the involution

r-*r,       9^9,       h„^-h„.

This means that the integral curves of Yx are preserved by the involution;

only their orientation is changed. Since Qx is now also symmetric (by (i)), this

means that the Y,-orbit entering Qx at (a(h), 9, h) (h < 0) leaves Qx at

(a(h), 9, — h). But the same is true of Y-orbits. Hence, our "surgery" in Q

does not alter the connections between orbits entering and leaving Q. We see,

then, that on the complement of the orbits that stay in Q for all (positive and

negative) time, Y and Y are conjugate. Y is the only Y-orbit entirely

contained in Q, but we know that the Y-invariant set in Q includes the

neighborhood of Y corresponding to Px. It is easy to see that (since 9 is

constant along orbits) this invariant set is homeomorphic to G and paralleliz-

able. Thus, Y satisfies all the conditions of the claim, and so Lemma 3 is

proven.

Given these lemmas, we can easily establish

Proposition I. If M is an open manifold and dim M > 3, then there exists

an explosive C °° flow on M.

Proof. We note with Krych [5] that, by [3], there exists a smooth function

L: M -> R with no critical points. If we pick a metric on M and take the

gradient of L, its flow will be completely unstable but, by [9], not explosive.

However, let y be some orbit of the gradient flow. By complete instability, y

is a closed embedding of R in M, and so y has a closed tubular neighborhood

N in M [2]. Of course, N need not be invariant under the flow, but it is

diffeomorphic to D"~l X R, and hence to U (of Lemmas 2 and 3) by a

diffeomorphism taking y to Y. Now, grad L transfers to a vectorfield on U,

which we take as Y in Lemma 3; the conclusion of Lemma 3 gives a

vectorfield Z on U which transfers back to N so as to agree with grad L on

the boundary. By construction, the flow of the vectorfield

x m [ grad L    off N,

\Z onN,

is completely unstable, and, on the image of the cylinder C, contains a copy

of (1); so it is explosive. This establishes Proposition 1.

It is easy to see that all our constructions could be achieved by means of

isotopies from the identity. Thus, we can strengthen the statement of Proposi-

tion 1 to a bifurcation theorem:

Corollary  I. If M is an open manifold, dim M > 3, and </> is any
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completely unstable flow on M, then <j> is homotopic, through smooth completely

unstable flows, to an explosive flow.

Actually, this construction has implications beyond the situation of com-

pletely unstable systems, for it shows that, when M is not compact, ß-explo-

sions can occur in regions that have no dynamic connection with the

nonwandering set:

Corollary 2. There exist flows (on open manifolds) satisfying axiom A and

the no-cycle condition which are not il-s table.

Proof. For example, the construction of Proposition 1 could equally well

be applied to the linear hyperbolic flow in R3,

x = -x,   y = -y,   z = z,

near any orbit that does not belong to any of the coordinate planes. Then the

original flow has ß = {0}, and there are, in the classical sense, "no cycles".

But with a copy of (1) glued in somewhere far from the origin, there exist

perturbations with periodic orbits in addition to the hyperbolic equilibrium.

3. Case 2. Punctured closed surfaces. By a. punctured closed surface, we mean

any open 2-dimensional manifold M which can be obtained from a closed

surface X by deleting a closed subset K. It is clear that each component of M

can be obtained in this way be deleting (from, possibly, a different closed

surface X) a set whose components are discs or points; thus we will think of

M as X — K, where A' is a closed surface and K c X is a totally disconnected

closed set.

We now turn to constructing our examples on all appropriate punctured

closed surfaces.

Proposition 2. If M is a punctured closed surface

M = X - K

(X a closed surface, K c M closed and totally disconnected) and M is not

homeomorphic to S2-{(one point)), then there exists an explosive flow on M.

Proof. We will distinguish three subcases:

(i)X = S2,

(ii) X = P2 (projective plane),

(iii) x(^) < 0 (x = Euler characteristic).

(i) X = S2. In this case, by hypothesis, K has at least two points. When K

has precisely two points, M is the cylinder, and the desired example has

already been constructed earlier, as (1).

If K has more than two points, we are looking at a "punctured cylinder".

Since K is closed and totally disconnected, it is a subset of a Cantor set, and

we can assume, up to homeomorphism, that the extra points of K, as a subset
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of the cylinder, are a subset of the Une 0 = 0. Now, the vectorfield given by

(1) would still be an example, except that it is not complete and hence does

not generate a flow. But we can multiply it by an appropriate smooth

real-valued function vanishing precisely on K so that the resulting vectorfield

is complete on the punctured cylinder, and since the complement of K on the

line 9 = 0 is nonempty, we can still perturb to create periodic orbits, as

before.

(ii) X = P2. If K is a single point, then X — K is (the interior of) a Möbius

band, which is double-covered by the cylinder. The flow (1) on the cylinder

does not project to the Möbius band, but the flow

i = cos 29,       9 = sin2 39,

which has six instead of two "Reeb components", does project to an explosive

flow on the Möbius band. The details are an easy variation on (1); the

projected flow is sketched in Figure 3a.

There is another way to arrive at this example, which illustrates a pattern

we will follow in case (iii). P2 can be represented as a plane "polygon" whose

boundary consists of two curves, which are identified as a single nonbound-

ing cycle in P2 (a generator of HX(P2) = Z^; the two "vertices" of the

polygon where the two edges touch are identified in P2 as a single point,

which we take as K. One can pick an orientation on this cycle which transfers

to a clockwise orientation of the boundary of the polygon. One can then

define a flow in the polygon by filling the interior with loops based at a single

vertex and circulating clockwise, and making each edge an orbit (Figure 3b).

The corresponding flow on P2 — K (Figure 3c) has no a- or w-limit points,

Figure 3

The Case X = P2

(a)
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Figure 3

The Case X = P2

(b)

Figure 3

The Case X = P2

(c)

but the single cycle corresponding to the edges is nonwandering, because

orbits starting near the edge on one "side" return later, on the other "side".

To remedy this, we need to separate the two "sides" of the cycle; we cut P2

along the cycle and insert a strip, which can be represented in the plane as a

strip added to one edge of the polygon. The closure of the strip in P2 — K is

homeomorphic to [0, 2tt] X R, and we can define a flow on the strip con-

jugate to the one defined by equations (1), with 9 regarded as a real number,

0 < 9 < 27T, instead of an element of the circle. There are actually two ways

this flow can be put into the strip, depending on which "side" corresponds to

{0} X R. Now the orbits defined by the loops interior to the polygon
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distinguish an "earlier" and a "later" side of the cycle: orbits starting near the

"earlier" side afterwards pass near the "later" side. (In the polygon, the

"later" edge occurs clockwise from the "earlier" one, starting from the

distinguished vertex.) On the other hand, perturbations of the flow (1) result

in orbits for which 9 increases from 0 to 2w. Thus, we pick a homeomorphism

of the strip with [0, 2tt] X R so that {0} X R identifies with the "later" edge,

{2tt} x R identifies with the "earlier" edge, and the orientation of the cycle

agrees with the standard orientation in the "/?" factor (Figure 3d). The flow

Figure 3

The Case X = P2

(d)

Figure 3
The Case X = P2

(e)
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is then completely unstable by arguments similar to those in (1), and explo-

sive because by a small perturbation it is possible to have an orbit cross the

strip from {0} X R to {27r} X R, then to follow a part of one of the loops

interior to the polygon from the "earlier" edge ({2tt} X Ä)to the "later" edge

({0} X R), and close up into a periodic orbit (Figure 3e). This flow is, of

course, conjugate to the version defined earlier.

If K has more than one point, we again place all of K on one edge of the

strip and multiply by a function to make the flow complete. As before, the

flow remains explosive.

(iii) x(^0 < 0. This is simply an elaboration of the construction sketched

above for X = P2. Once again, we start with K a single point. By the

standard classification theory for closed surfaces (see, e.g., [6, pp. 72-80]), X

can be represented as a polygon in the plane, with certain pairwise identifica-

tions of the edges, and all vertices identified to a single point in X, which we

take as K.

Each identified pair of edges represents a nonbounding cycle in A"; an

orientation of each cycle induces orientations of the edges of the polygon. If

it is possible to orient the cycles in X so that the edges of the polygon are all

oriented clockwise, then we mimic the procedure outlined for A = P2: fill the

interior of the polygon with clockwise loops at one vertex, and replace the

cycles by strips on which the flow is conjugate to (1), with {0} X R corre-

sponding to the "later" side and {27r} X R corresponding to the "earlier"

side. As before, one can create periodic orbits crossing any one of the cycles.

On the other hand, if a clockwise orientation of the edges consistent with

orientations of the cycles in X is not possible, we modify the construction

slightly. Again we replace each cycle with a strip, and again fill the interior of

the polygon with clockwise loops from one vertex. This forces an orientation

of each edge of each strip in X; for those strips whose two edges are oriented

the same way, we proceed as before, gluing in a copy of (1). However, some

strips will now have edges oriented in opposite directions; these are homeo-

morphic to [0, m] x R, and we can pick the homeomorphism so that the

"later" edge is identified with {0} x R, its orientation agreeing with that of

R. We note, then, that the restriction of equations (l)to0< 9 < m gives a

flow on the strip for which 9 = m is an orbit with 9 decreasing; thus, the

orientation of the other edge of the strip is consistent with the orientation

coming from the loops. Again, it is possible to perturb so as to create periodic

orbits which, starting from {0} X R, increase 9 to m, then follow part of a

loop interior to the polygon back to {0} X R.

In either case, we have an explosive flow: in the language of [9], the "later"

edge {0} X R of each strip has {m) X R in its first positive prolongation, /*,

and if the edges of the strip are oriented the same way, then the "earlier" edge

{2w} X R is in the next prolongation, (Jx+)2, of {0} X R. On the other hand,
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looking at the loops interior to the polygon, the "later" edge is in the first

prolongation of the "earlier" edge, so that each edge is in its own second

prolongation J2 (which contains the union (Jx)n, n = 1, . . . ) and so is

recurrent in the sense of Auslander [1].   Q.E.D.

In effect, our construction in this case, at least for X ¥= S2, has been to

create a flow on X whose nonwandering set is a single equilibrium, which we

put in K, but with "cycles" of prolongational limits (Auslander recurrence)

which can be achieved without passing through K. We then deleted K. Thus

we were really elaborating the idea of [5] and [7].

However, not all surfaces can be obtained by deleting points from a closed

surface; for example the "infinite ladder"-two cylinders joined by a count-

able number of tubes-has an infinite number of "handles", and so cannot be

embedded in any closed surface. On the other hand, every such open surface

can be formed by "gluing together" a countable family of punctured closed

surfaces ([4], [11]). In the next section, we will construct examples on these

more complicated surfaces. However, it will be useful, first, to establish the

following elaboration of our technique above. We state it as a theorem about

closed surfaces; its relevance to our problem will become clear during the

construction in the next section.

Lemma 4. Let X be a closed surface, X ¥= S2, P2, and let K =

(x0, x ],..., x„} be a finite nonempty set of points in X. If n > 1, suppose we

have specified that certain of the x, (i > 1) are to be "sinks" and certain others

are to be "sources". Then there exists a flow § on X with the following

properties:

(l)Sl(<b) = K.

(2) Each x„ i > 1, is a fixed sink or source o/</>, as specified.

(3) Every nonequilibrium orbit has either an a-limit or an (¿-limit (or both) at

x0.

(4) The flow has "cycles"-that is, its Auslander recurrent set [9] intersects

X - K.

Proof. As before, X can be represented as a polygon with identifications,

and all vertices identified with a single point, which we take to be x0. We wish

to repeat the construction of the preceding proof, but this time we have to

take account of our specified sinks and sources.

We can assume that x,,..., x„ lie in the interior of our polygon; thus we

can enclose them in a loop based at a single vertex, and separate them from

each other by loops, all based at this vertex. Thus, each x„ i > 1, is enclosed

in a "crescent" with ends at x0.

We can orient each of the loops we have drawn so far at will. Now, in each

crescent, we draw an additional loop which hits the point x, in its interior.

This loop will consist of two orbits, separated by x„ and their orientation is
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determined by whether x, is a sink or source. Finally, we need to fill in the

orbits between the loops.

Note that the various loops and their orientations divide each crescent into

two triangles, whose vertices are x, and the two ends of the crescent. Since x,

is either a sink or a source, the orientation of the edges of each triangle is not

that of the boundary of a simplex; thus, the edge path formed by the outer

edge of the crescent and one of the two orbits divided by x, is homotopic,

preserving endpoints, to the other orbit (see Figure 4). This gives a foliation

'sink'

Figure 4

Lemma 4

(b)
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of the interior of the triangle by lines oriented consistently with the edges,

and gives us the flow lines inside the crescents.

We are left then with filling in the interior of the innermost loop, and the

part of the polygon exterior to the loops. The interior of the innermost loop is

simply filled with loops. The exterior of the loops can be regarded as a new

polygon, with a single extra edge coming from the outermost loop. We can

therefore apply the construction of Proposition 2 to this, and obtain the

desired flow.

4. Case 3. General surfaces. We turn now to the final case of our theorem,

when M is an open surface which cannot be embedded in a closed surface. A

representation of any open surface as a sphere with (possibly an infinite

number of) holes, handles, and crosscaps was given by von Kerekjarto ([4,

Chapter 5]). Some questions concerning von Kerekjarto's original arguments

have been raised and treated more recently by Richards [11]. We shall make

use of one simple consequence of this theory, which we state formally, but

without proof:

Lemma 5 (see [4], [11]). Suppose M is an open surface which does not embed

in any closed surface. Then there exists a compact, connected submanifold-with-

boundary M0 in M, with the following properties:

(1) Distinct boundary components of M0 bound distinct components of M —

M0.

(2) The interior of M0 is homeomorphic to X — K, where X is a closed surface

of Euler characteristic < 0 and K is a finite set of points in X.

The general representation of any open surface, M, is in fact a union of

surfaces like M0, except that X may be S2 or P2. If more than one of these

compact pieces is a punctured projective plane, we can take a union of pieces

to obtain M0 satisfying (2); on the other hand, if all but a finite number of the

compact pieces are punctured spheres, then M itself has, in von Kerekjarto's

terminology, only "ends of type 1", and so embeds in a closed surface.

Let us fix M and M0 as above, and fix X, K = {x0, . . ., xn). The boundary

components of M0 are circles corresponding to the points of K; we number

these boundaries consistently with the numbering of the x,:

dM0 = B0 u • • • U Bn.

Let us, for convenience, denote the component of M — M0 adjoining B¡ by

C,

Our general plan is to start, as in the higher-dimensional case, with a

gradient flow on M. We will replace the flow inside MQ by one coming from

Lemma 4, so as to create an explosive situation. Our main difficulty will be in

"patching together" the gradient flow on M - M0 with the explosive flow

inside M0. The two flows have different kinds of langendes at the various
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boundaries B¡; we will therefore need to modify the gradient flow at certain

points of M — M0, and we will need to be careful not to create nonwandering

points in the process.

Our starting point, then, is the flow described in

Lemma 6. Given M and M0 as in Lemma 5, there exists a completely unstable

flow <j>on M satisfying the following nondegeneracy condition at dM0:

If <b is tangent to 3A/0 at m E B¡, then tj>\ dM0 is transverse at m to TB¡.

Proof. As before, there exists a function on M with no critical points. Its

gradient (relative to any metric) gives a completely unstable flow which is

nonexplosive by [9]. The nondegeneracy condition above is the simplest

version of "condition L" in [10], which is generic. But a perturbation of the

given gradient flow is still completely unstable; this perturbation is our

desired <b.

To keep control of our modifications of <> in M — M0, we will restrict

ourselves to certain invariant "bands" of orbits which leave M0 and never

return. To find these bands, we formulate the idea of "escape sets".

Definition. Suppose m E dM0 and <j>(m) is not tangent to dM0. We say that

m is a positive (resp. negative) escape point if for all f > 0 (resp. t < 0)

<b(t, m) & M0.

We note (by complete instability) that every point of M0 must eventually

escape M0 in both directions. If a point crosses B¡ into C, and later (or

earlier) returns to M0, it must do so via B¡; if its orbit is not tangent to B¡ at

either point, then nearby points of B¡ return to B¡ at nearby times. Thus, the

(forward) first-return map from 8M0 to itself is defined continuously on the

complement of the (positive) escape points and the points flowing to langen-

des. The domain of this map is open.

It will be useful to assume that each B¡ contains escape points of one or the

other type. To this end, we show

Lemma 7. If B¡ contains neither positive nor negative escape points, then C¡ is

compact.

Proof. There are finitely many points of tangency on B¡, say v,, . . . ,yk.

Strictly speaking, one of these might "escape" in both directions, but in that

case, we can shrink B¡ into M0 slightly and replace the "escaping" tangency

with a (unique) nearby tangency that reenters B¡ in both directions. We can

assume, therefore, that for each tangency y} we can take a maximal interval y,

of the orbit of yj intersecting C„ that the endpoints of this interval are

transverse to B¡, and that y- is compact. The intersections of yv ..., yk with

B¡ form a finite set of points; its complement is a finite set of intervals on

which <j> is transverse to B¡. Since there are no escape points, the first-return
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map takes those intervals at which <b points out of M0 into the intervals at

which it points in. The orbit segments joining these intervals form a finite

number of bands in C, whose boundary is the union of the y¡. Since the ends

of y, are transverse to B¡, the y, are interior to the closure of the "bands" in

C,. This closure is therefore a subset of C, which is compact, but open in C,;

since C, is connected, the lemma follows.

By adjoining all the compact C, to A/0, we can assume that each boundary

component contains escape points. We will now complete the construction,

distinguishing two subcases:

Case A. There are at least two noncompact C¡.

Case B. Only C0 is compact.

We will concentrate on Case A, and return to Case B at the end.

Case A. Pick an escape point/», on each boundary component B¡. Since M0

contains both positive and negative escape points, we can make sure that our

choices include at least one positive and one negative escape point. By

renumbering, we assume that/>0 is a negative escape point, and/», is a positive

escape point. The others (if any) can be of either type, although we note

which are positive and which are negative, for future reference.

Now, using a "thickening" technique as in Lemma 3, we modify ^> so as to

replace the (full) orbit of each p¡ with a band of parallel orbits running

through M. The band from/», intersects B¡ in an interval of escape points, E¡;

let F¡ denote the semiorbit of Et which escapes from M0. The subset Mx = M0

U F0 u Fx u • • • U F„ is closed in M, and its boundary consists of part of

M0 together with 2n + 2 semiorbits of endpoints under (j>. We will modify <j>

only inside Mx, and also will insure that any orbit which enters and then

leaves Mx does so via the same points as it did under the unmodified flow.

This will help insure complete instability.

We now turn to the model of M0 as X — K; we label x,, as well as all other

x, whose associated escape set E¡ is positive, as "sinks", and label as "sources"

all x, with E¡ negative. Using Lemma 4, we construct a flow on X with

ß = K, sinks and sources as specified, x0 in a(x) u w(x) for all x E X, and

with Auslander recurrence off K. This gives a flow \p on M0 with ß(^) c 3A/0

and an explosive situation in M0.

To define our final flow, we will begin by defining the foliation by integral

curves, and then checking that these can be oriented consistently with a flow.

Basically, we would like >// inside M0 and <b outside, but there are two

difficulties: (i) at B¡, i = 1, . . ., n, <// is everywhere transverse to B¡, but <¡> has,

in general, some tangencies, while (ii) at 50, both \j/ and <b may have

tangencies, but they can be different.

To remedy this situation, we start by picking orbits y, for \p with one end at

B0 and the other at B¡, / = 1, . . ., n. Again using the technique of Lemma 3,

we thicken each y, into a "band" of orbits, T„ joining each B¡ to B0.
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Now, each T, hits 9M0 in two closed intervals, which we shall call G, c B0

and H¡ c B¡, i = 1,. .., n. We would like to have every tangency of </> with

5, occur inside H¡, and for its effect to be pushed across T, to escape M0 via

G¡ into F0; we would also like every tangency of \p with BQ to escape from M0

into F0. We need therefore to modify <b (or i//) so that H¡ and ¿T, cover B¡.

This is, in fact, easy to do. For / = 1,.. ., n, let U¡ be a collar neighbor-

hood of B¡ in M0-that is, U¡ is homeomorphic to the product of a closed

interval and a circle, U¡ = [0,e]XS\ with 5, = {0} X S\ Define on each Ut

a diffeomorphism A,: U¡ -» U¡ which preserves the levels {r} X S1 of £/,, is

the identity near {e} X S1, but near B¡ = {0} X S1 is a homeomorphism of

S1 taking Ä, into an interval whose interior contains clos[S' — E¡\. The

image of the integral curves of ¡¡/ under A, is a new flow, with B¡ c int H¡ u

int E¡.

To control the behavior at B0, we do a similar thing; but first we single out

a closed interval G0 c int [Hx n Ex], and follow it back by \p to an interval

Wo C BQ. Now, we define A„ on a collar neighborhood U0 of B0 so that

clos[S ' - E0] c int \(H0). We will call this new flow on M0 i// as well, and

use //„, //„ etc. in place of &q(H0), àx(Hx), etc.

We now wish to "patch in" the tangencies at the various boundary

components. First, we worry about tangencies of <i> with B¡, i = 1, . . . , n. Let

V¡ = [0, e] X S1 be a collar neighborhood of B¡ in C, (B¡ = {0} X S1). We

can think of integral curves of <b in V¡ as graphs of functions 51 -»[0, e]; a

tangency "external" to M0 occurs where a graph has a local minimum value

0, while an "internal" tangency occurs at a zero maximum. In either case, our

nondegeneracy condition on tangencies insures that nearby integral curves

have similar extrema, and by picking e small, we can assume that each level

of V¡ contains exactly the same kinds of tangencies. For clarity, we separate

our treatment into two cases: internal and external tangency.

Let q E B¡ be a tangency of <f> "internal" to M0. The nearby tangencies on

other levels of V¡ form a curve, Q(r), extending from q = 0(0) G B¡ = {0}

XS'toß(l)e{l}x5'. (See Figure 5.) For 0 < t < 1, there is an orbit

segment of <b inside [0, t] X Sl, tangent to {t} X Sl at Q(t), and intersecting

B¡ in a pair of points. By picking Vi sufficiently small, we can assume that all

of these segments hit B¡ well inside H¡. Let the orbit segment through Q(\)

intersect B¡ at the pair of points q~, q+. Denote by [q~, q+] the interval in B¡

containing q, and note that for 0 < t < ¿, the orbit segment hitting Q (r)

intersects [q~, q+] at a pair of points, which we can call q~(r), <7+(t). With a

little smoothing inside M0, near B¡, we can link up the (unmodified) integral

curves of <j> crossing B¡ just outside [q~, q+] with (slightly modified) integral

curves of \p in Y¡, which cross over to B0 and escape into FQ. Let a ~ and a +

denote the two semiorbits of \¡/, hitting B¿ atq~ and q+, crossing M0 via Y¡ to
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Figure 5

Surgery at an Internal Tangency

Eq, and thence following <b to escape into F0. The region A c F0 u Y¡ U V¡

bounded by a~, a+ and the orbit-segment of <b from q~ to q+ (including the

boundary curve in A) is a closed region in M, diffeomorphic to the plane

region

{(x, v) E R2\x2 + y2 < 1 and v > 0};

similarly the region A* c V¡ bounded by the orbit segment from q~ to q*

and the interval [q~, q+] is diffeomorphic to the closed upper half-disc, with

[? > <7+] mapping to the x-axis. Thus A* — B¡ is diffeomorphic to A, and the

f oliation of A * — B¡ by orbit segments of <b then induces a f oliation of A with

the boundary leaf pieced together from a", a+, and the orbit segment from

q~ to q+. This extends the foliation by integral curves of <#> slightly outside A*

and by integral curves of \p in Y¡, — A to a foliation of part of M including all

of A. We have, in effect, taken the "band", obtained by letting [q~, q+] flow

under \p into F0, and glued into it a kind of "Reeb component" which

matches up with the langendes near q. We note for future reference that in

this extension we have insured that the "first-return" map of this new

foliation on points of B¡ slightly outside [q~, q+] is identical with the

"first-return" map of <£; we could, with slightly more care, insure that the new

foliation on A was an extension of the original foliation on A *, so that the

"first-return" map is unaltered by this surgery.

Now, if q E B¡ is a tangency of <p "external" to M& we follow an analogous

procedure. Again, q belongs to a curve Q(t) of tangencies, with Q(0) = q

and Q(\) E {1} X S1. This time, however, the orbit segment through Q(r),
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0 < t < 1, crosses {1} x S1 instead of B¡ = {0} X S1. Let r~, r+ £ {1} X

5' be the intersection of the orbit segment through Q(\) with {1} X Sx and

s~,s+ the intersection of the orbit segment through q = Q(0) with {1} X Sl.

Figure 6

Surgery at an External Tangency

The intervals [r~, r+] c [s~, s+] in {1} X S1 will be those containing 0(1).

We now pick a small interval [q~, q+] in B¡ containing q, and let p~,

p+ E {1} X S1 be the points where the orbits of q~, q+ cross {1} X Sl. Of

course, [s~, s+] c [p~,p*]■ Again, let a~, a+ denote semiorbits of q~, q +

under i|/ crossing M0 via Y¡ and escaping via <j> into F0. Let A G FQ\J Y¡ \J V¡

be the region in M bounded by a-, a+, the <£-orbit segments [q~,p~] and

[q+,p+], the intervals [p~, r~] and [r+,p+] in {1} X Sl, and the <i>-orbit

segment through Q(j). Let A* c V¡ be the region bounded by the orbit-seg-

ment through q, the intervals [s~, r~] and [r+,s+] in {1} x Sl, and the

orbit-segment through Q(\). Now, the only point of A * in B¡ is q, so A and

^4* - Bi; = A* — {q} are diffeomorphic. We can assume the diffeomorphism

is the identity on the orbit-segment through Q(\), and that it respects the

first-return map in the sense that if a point x of [p~, r~] lies in [s~, r~], and

if v is the other end (in [r+, s+]) of the </>-orbit segment through x, then the

diffeomorphic image of x lies on the same ^-orbit segment as the diffeomor-

phic image of v.

Again, the diffeomorphism A* — {q} ->A carries the foliation by orbit

segments of <i> to a foliation of A whose boundary leaves are the orbit segment

through Q(j) and the two half-lines a" u [q~,P~], «+ U [q+,P+]- Thus,

we have again "patched" </> to $ near q, in such a way that the new flow has
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the same first-return map on (s~,s+) as <b, while points of [p~,s~] and

[s +, p +] do not return to B¡.

These two processes tell us how to "patch" </> to ^ near tangencies to B¡;

elsewhere on B¡, both flows are transverse to B¡, so with a little smoothing we

can join up integral curves of \p in M0 to integral curves of </> in M — M0. On

the complement of H¡ in B¡, we can orient this "patched" foliation by integral

curves consistently, since x, is a "sink" precisely if <f> points out of M0, and so

on. In H¡, the tangencies of 0 force some reversal of direction all along the

part of A trailing into F0. However, we note that there must be an even

number of such reversals, and the "strips" of the various "A" in F0 u Y¡ are

all parallel, so that the reversals of orientation can be filled in between the

various strips and still end up consistent on the boundary of F0 u Y¡.

We need now to take care of the tangencies at B0. The situation here is a

little more complicated, in that both <¡> and \j/ can have tangencies at B0.

However, we have managed things in such a way that the tangencies of <f> all

occur inside the interval G0; thus, we can mimic the whole process just

described to extend the flow across the interior of Yx into H0, so that the

tangencies of <b with B0 "escape" into Fx. On the other hand, the tangencies of

i/> with B0 all occur inside EQ, the "escape set" of <¡> into F0. Thus, we can push

all i/z-tangencies directly into strips that escape into F0 immediately, without

crossing M0 at all. The details of labelling are slightly different, but it is clear

that again the process we have employed near B¡ can be adapted to this

situation. Finally, the complement in B0 of these two kinds of situations

consists again of a set where the flows are both transverse to B0, and we can

"patch". The orientation of the foliation, again, presents no problem, for we

only need to reverse the orientation on a series of "strips" between the

various "A"'s, all contained in the strip FQ. The total number of reversals

must, again, be even, so that we have the right orientation on the boundary of

F0 in M — M0.

To complete the consideration of Case A, we need to show that the flow

constructed in this manner is completely unstable. To this end, we note first

that our constructions have all been maneuvered in such a way that the

first-return map of the new flow to 3M0 agrees with a restriction of the

first-return map of <b to 9A/0.

We note that an open subset of C, — F¡ (i > 1) will trace out, under the

new flow, an open set in M whose intersection with C, is a subset of its orbit

under the original flow <b, and so points of C, — F¡ (i > 1) continue to

wander under the new flow. On the other hand, points of C, n F¡ cross B¡ at

most once, and if they do so, they then eventually escape M0 via E0. Points of

C0 — F0 which enter M0 either escape into the interior of F0 or cross via \p to

some E¡, i > 1, and vanish into C¡. Points of F0 my reenter F0, but they do so,

if at all, via a finite sequence of distinct and disjoint "strips" coming from the
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various ".4 "'s of our construction. Finally, the boundary of each F¡ is part of

a band of "parallel" orbits in C„ and so these again wander. Since every orbit

in M0 leaves M0 (under \p) in finite time, the above considerations sketch a

proof that the new flow is completely unstable. On the other hand, our

construction of \¡/ insures that the Auslander recurrent set intersects M0 in a

nonempty set, and so the flow is explosive.

Case B. If M — M0 is connected, our construction needs to be modified a

little. In this case, we find a positive escape point p+ and a negative escape

point/»- in B0, and again "thicken" the two orbits to obtain a positive escape

interval E+ and a negative interval E~, both in B0. These are of course

disjoint closed intervals. Their semiorbits escaping into M — M0 are two

"strips", labelled F+ and F~, respectively. We now use Lemma 4 to build a

flow \¡/ on M0; we note that by assumption A' is a polygon with at least two

pairs of identified edges. We put in a prolongation cycle of the flow across

one pair, and "thicken" the nonbounding curve corresponding to another pair

of edges into a band Y of parallel orbits. The band Y crosses B0 at two

disjoint intervals: G, where orbits enter M0, and H, where they leave. We then

use a diffeomorphism on a collar of B0 in M0 to make sure that E ~ and G

cover B0, and that H c interior E~. The situation is sketched in Figure 7: if

we ignore orientation for a moment, we see that the two boundary-orbits of Y

in M0 can be extended backward into E~ and forward into E~, and that

these extended lines in M separate C0= M — M0 into four sets. One of these

is a strip inside F~ bounded at B0 by H; we call this strip Y~. Two other

strips, flanking Y~ on either side, touch B0 at the two intervals of B0 — {H u

G); we label these Fx~ and F2 . Finally, the complement of F{~ u Y~ u F2

in C0 = M — M0 is a more complicated manifold, abutting M0 on G; call this

C +. Now, using our technique as before, we can extend the flow on M0 — Y

into F{~ U F2 by extending each tangency of i// with B0 — {H u G) into a

"strip" A in Fx~ or F2; {M0 - Y} u Ff U F2 is then an invariant set,

homeomorphic to M0 — Y, on which the flow is wandering. We note that

each interval of B0 — {H u G} will contain an odd number of tangencies of

\p with B0, so a consistent flow orientation can be defined on F, u T" u F2

and the new orientation on T" is the negative of the original one on E~.

Now, we use similar techniques to push tangencies of <f> (which are all inside

G) across Y and into Y~. There will be an even number of tangencies of <f>

with B0 in G, so again the re-orientation (which will of course extend into Y~)

will present no problem. Finally, if we make sure that each of the two orbits

bounding these four sets is "thickened", it is easy to see that there are no new

nonwandering points: the flow on C+ uTuT" is homeomorphic to the

original flow <¡> on C - F~, and the flow on {M0 - Y} u Ff u F2 is

homeomorphic to the flow i^ on X — {x0}.
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Figure 7

Case B

But then the two cases A and B have both been taken care of, and we have

shown:

Proposition 3. If M is an open 2-manifold not embeddable in any closed

2-manifold, then M supports an explosive flow.

This proposition is the last case of the theorem stated at the outset: R ' and

R 2 are the only open manifolds without explosive flows.
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