A $q$-analog of restricted growth functions, Dobinski’s equality, and Charlier polynomials
HTML articles powered by AMS MathViewer
- by Stephen C. Milne
- Trans. Amer. Math. Soc. 245 (1978), 89-118
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511401-8
- PDF | Request permission
Abstract:
We apply finite operator techniques due to G. C. Rota to a combinatorial identity, which counts a collection of generalized restricted growth functions in two ways, and obtain a q-analog of Charlier polynomials and Dobinski’s equality for the number of partitions of an n-set. Our methods afford a unified proof of certain identities in the combinatorics of finite dimensional vector spaces over ${\text {GF}}(q)$.References
- G. E. Andrews and R. A. Askey, The classical and discrete orthogonal polynomials and their q-analogs (to appear).
- Walled A. Al-Salam, $q$-Appell polynomials, Ann. Mat. Pura Appl. (4) 77 (1967), 31–45. MR 223622, DOI 10.1007/BF02416939
- L. Carlitz, $q$-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987–1000. MR 27288, DOI 10.1215/S0012-7094-48-01588-9
- Leonard Carlitz, On abelian fields, Trans. Amer. Math. Soc. 35 (1933), no. 1, 122–136. MR 1501675, DOI 10.1090/S0002-9947-1933-1501675-9 G. Dobinski, Summirungder Reihe $\Sigma {{{n^m}} \left / {\vphantom {{{n^m}} {n!}}} \right . {n!}}$ für m = 1, 2, 3, 4, 5,..., Grunert’s Archiv 61 (1877), 333-336.
- Jay Goldman and Gian-Carlo Rota, The number of subspaces of a vector space, Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968) Academic Press, New York, 1969, pp. 75–83. MR 0252232
- Wolfgang Hahn, Über Orthogonalpolynome, die $q$-Differenzengleichungen genügen, Math. Nachr. 2 (1949), 4–34 (German). MR 30647, DOI 10.1002/mana.19490020103 G. Hutchinson, Partitioning algorithms for finite sets, Comm. ACM 6 (1963), 613-614.
- Stephen Milne, Restricted growth functions and incidence relations of the lattice of partitions of an $n$-set, Advances in Math. 26 (1977), no. 3, 290–305. MR 485416, DOI 10.1016/0001-8708(77)90043-3
- Gian-Carlo Rota, The number of partitions of a set, Amer. Math. Monthly 71 (1964), 498–504. MR 161805, DOI 10.2307/2312585
- S. G. Williamson, Ranking algorithms for lists of partitions, SIAM J. Comput. 5 (1976), no. 4, 602–617. MR 446995, DOI 10.1137/0205039
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 89-118
- MSC: Primary 05A15; Secondary 33A65
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511401-8
- MathSciNet review: 511401