Conformality and semiconformality of a function holomorphic in the disk
HTML articles powered by AMS MathViewer
- by Shinji Yamashita
- Trans. Amer. Math. Soc. 245 (1978), 119-138
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511402-X
- PDF | Request permission
Abstract:
Conformality and semiconformality at a boundary point, of a function f nonconstant and holomorphic in $\left | z \right | < 1$ are local properties. Therefore one would suspect the requirement of such global conditions on f as f is univalent in $\left | z \right | < 1$, or f is a member of a larger class which contains all univalent functions in $\left | z \right | < 1$. We shall prove some extensions and new results without any assumption on f, or with a local assumption on f at most. Our methods are, for the most part, different from the ones in the classical cases. One of the main tools is Theorem 8 on the angular limits of the real part of a holomorphic function and its derivative.References
- Jochen Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23–43 (German). MR 299780, DOI 10.1515/crll.1972.255.23
- D. M. Campbell and J. A. Pfaltzgraff, Boundary behaviour and linear invariant families, J. Analyse Math. 29 (1976), 67–92. MR 477054, DOI 10.1007/BF02789976
- P. L. Duren, H. S. Shapiro, and A. L. Shields, Singular measures and domains not of Smirnov type, Duke Math. J. 33 (1966), 247–254. MR 199359, DOI 10.1215/S0012-7094-66-03328-X
- Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47–65. MR 87746, DOI 10.1007/BF02392392
- Zeev Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545–551. MR 29999, DOI 10.1090/S0002-9904-1949-09241-8
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- Christian Pommerenke, Linear-invariante Familien analytischer Funktionen I, Math. Ann. 155 (1964), no. 2, 108–154 (German). For a review of this paper see [MR0168751]. MR 1513275, DOI 10.1007/BF01344077
- Christian Pommerenke, Linear-invariante Familien analytischer Funktionen. I, II, Math. Ann. 155 (1964), 108–154; ibid. 156 (1964), 226–262 (German). MR 0168751, DOI 10.1007/BF01363289
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- J. L. Walsh and D. Gaier, Zur Methode der variablen Gebiete bei der Randverzerrung, Arch. Math. (Basel) 6 (1954), 77–86 (German). MR 64874, DOI 10.1007/BF01899218
- A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47–76. MR 12691, DOI 10.1215/S0012-7094-45-01206-3
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 119-138
- MSC: Primary 30C55; Secondary 30D40, 30D45
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511402-X
- MathSciNet review: 511402