Dolbeault homotopy theory
HTML articles powered by AMS MathViewer
- by Joseph Neisendorfer and Laurence Taylor
- Trans. Amer. Math. Soc. 245 (1978), 183-210
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511405-5
- PDF | Request permission
Abstract:
For complex manifolds, we define âcomplex homotopy groupsâ in terms of the Dolbeault complex. Many theorems of classical homotopy theory are reflected in the properties of complex homotopy groups. Analytic fibre bundles yield long exact sequences of complex homotopy groups and various Hurewicz theorems relate complex homotopy groups to the Dolbeault cohomology. In a more analytic vein, the classical Fröhlicher spectral sequence has a complex homotopy analogue. We compute these complex homotopy invariants for such examples as Calabi-Eckmann manifolds, Stein manifolds, and complete intersections.References
- A. Borel, A spectral sequence jor complex analytic bundles, Topological Methods in Algebraic Geometry, Springer-Verlag, New York, 1966.
- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458â538. MR 102800, DOI 10.2307/2372795
- A. K. Bousfield and V. K. A. M. Gugenheim, On $\textrm {PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 425956, DOI 10.1090/memo/0179
- Eugenio Calabi and Beno Eckmann, A class of compact, complex manifolds which are not algebraic, Ann. of Math. (2) 58 (1953), 494â500. MR 57539, DOI 10.2307/1969750 H. Cartan, AlgĂšbres dâEilenberg-Mac Lane et homotopie, ExposĂ© 3, SĂ©minaire H. Cartan de lâEcole Norm. Sup., SecrĂ©tariat MathĂ©matique, Paris, 1954/1955.
- Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of KĂ€hler manifolds, Invent. Math. 29 (1975), no. 3, 245â274. MR 382702, DOI 10.1007/BF01389853
- Samuel Eilenberg and John C. Moore, Limits and spectral sequences, Topology 1 (1962), 1â23. MR 148723, DOI 10.1016/0040-9383(62)90093-9
- Alfred Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 641â644. MR 73262, DOI 10.1073/pnas.41.9.641
- Hans Grauert, On Leviâs problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460â472. MR 98847, DOI 10.2307/1970257
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Friedrich Hirzebruch, Der Satz von Riemann-Roch in Faisceau-theoretischer Formulierung: einige Anwendungen und offene Fragen, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, Erven P. Noordhoff N. V., Groningen; North-Holland Publishing Co., Amsterdam, 1956, pp. 457â473 (German). MR 0087187
- Dale Husemoller, John C. Moore, and James Stasheff, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974), 113â185. MR 365571, DOI 10.1016/0022-4049(74)90045-0
- Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. MR 1344215
- J. Peter May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrodâs Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970) Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 153â231. MR 0281196 J. Neisendorfer, The rational homotopy groups oj complete intersections (preprint).
- Joseph Neisendorfer and Timothy Miller, Formal and coformal spaces, Illinois J. Math. 22 (1978), no. 4, 565â580. MR 500938
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205â295. MR 258031, DOI 10.2307/1970725
- M. Rapoport, ComplĂ©ment Ă lâarticle de P. Deligne âLa conjecture de Weil pour les surfaces $K3$â, Invent. Math. 15 (1972), 227â236 (French). MR 309943, DOI 10.1007/BF01404127
- Larry Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58â93. MR 216504, DOI 10.1090/S0002-9947-1967-0216504-6 D. Sullivan, Topology of manifolds and differential forms, (Proc. Conf. Manifolds, Tokyo, 1973).
- R. O. Wells Jr., Differential analysis on complex manifolds, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR 0515872
- George W. Whitehead, On mappings into group-like spaces, Comment. Math. Helv. 28 (1954), 320â328. MR 65927, DOI 10.1007/BF02566938 R. S. Kulkarni and J. W. Wood, Topology of non-singular complex hypersurfaces (preprint).
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 183-210
- MSC: Primary 32C10; Secondary 14F40, 55P62, 57R99, 58A14
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511405-5
- MathSciNet review: 511405