The real and rational cohomology of differential fibre bundles
HTML articles powered by AMS MathViewer
- by Joel Wolf
- Trans. Amer. Math. Soc. 245 (1978), 211-220
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511406-7
- PDF | Request permission
Abstract:
Consider a differential fibre bundle (E, $\pi$, X, ${G \left / {\vphantom {G H}} \right . H}$ , G). Under certain reasonable hypotheses, the cohomology of the total space E is computed in terms of the cohomology of the base space X and algebraic invariants of the imbedding of H into G.References
- Paul F. Baum, On the cohomology of homogeneous spaces, Topology 7 (1968), 15–38. MR 219085, DOI 10.1016/0040-9383(86)90012-1
- Paul Baum and Larry Smith, The real cohomology of differentiable fibre bundles, Comment. Math. Helv. 42 (1967), 171–179. MR 221522, DOI 10.1007/BF02564416
- James Eells Jr., A setting for global analysis, Bull. Amer. Math. Soc. 72 (1966), 751–807. MR 203742, DOI 10.1090/S0002-9904-1966-11558-6
- Samuel Eilenberg and John C. Moore, Limits and spectral sequences, Topology 1 (1962), 1–23. MR 148723, DOI 10.1016/0040-9383(62)90093-9
- Samuel Eilenberg and John C. Moore, Homology and fibrations. I. Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1966), 199–236. MR 203730, DOI 10.1007/BF02564371
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341 J. Wolf, The cohomology of homogeneous spaces and related topics, Thesis, Brown University, 1973.
- Joel Wolf, The cohomology of homogeneous spaces, Amer. J. Math. 99 (1977), no. 2, 312–340. MR 438370, DOI 10.2307/2373822
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 211-220
- MSC: Primary 55R20
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511406-7
- MathSciNet review: 511406