Hamiltonian systems in a neighborhood of a saddle point
HTML articles powered by AMS MathViewer
- by Viorel Barbu
- Trans. Amer. Math. Soc. 245 (1978), 291-307
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511411-0
- PDF | Request permission
Abstract:
The behavior of Hamiltonian differential systems associated with a concave convex function H in a Hilbert space is studied by variational methods. It is shown that under quite general conditions on the function H the system behaves in a neighborhood of a minimax saddle point of H much like as in the classical theory of ordinary differential systems. The results extend previous work of R. T. Rockafellar.References
- Viorel Barbu, Convex control problems of Bolza in Hilbert spaces, SIAM J. Control 13 (1975), 754–771. MR 0372714, DOI 10.1137/0313044 —, Nonlinear semigroups and evolution equations in Banach spaces, Noordhoff,Groningen, Publishing House of Romanian Academy, 1976.
- Viorel Barbu, Constrained control problems with convex cost in Hilbert space, J. Math. Anal. Appl. 56 (1976), no. 3, 502–528. MR 487680, DOI 10.1016/0022-247X(76)90022-6 H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, no. 5, North-Holland, Amsterdam, 1973. J. Moreau, Fonctionnelles convexes, Séminaire sur les équations aux dérivées partielles, College de France, 1966-1967.
- R. Tyrrell Rockafellar, Generalized Hamiltonian equations for convex problems of Lagrange, Pacific J. Math. 33 (1970), 411–427. MR 276853, DOI 10.2140/pjm.1970.33.411
- R. Tyrrell Rockafellar, Saddle-points and convex analysis, Differential Games and Related Topics (Proc. Internat. Summer School, Varenna, 1970) North-Holland, Amsterdam, 1971, pp. 109–127. MR 0285947
- R. T. Rockafellar, Monotone operators associated with saddle-functions and minimax problems, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 241–250. MR 0285942
- R. T. Rockafellar, Saddle points of Hamiltonian systems in convex problems of Lagrange, J. Optim. Theory Appl. 12 (1973), 367–390. MR 358516, DOI 10.1007/BF00940418
- R. Tyrrell Rockafellar, Saddle points of Hamiltonian systems in convex Lagrange problems having a nonzero discount rate, J. Econom. Theory 12 (1976), no. 1, 71–113. Hamiltonian dynamics in economics. MR 475762, DOI 10.1016/0022-0531(76)90028-4
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 291-307
- MSC: Primary 49A40; Secondary 34G99, 47H15
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511411-0
- MathSciNet review: 511411