Chern classes of certain representations of symmetric groups
HTML articles powered by AMS MathViewer
- by Leonard Evens and Daniel S. Kahn
- Trans. Amer. Math. Soc. 245 (1978), 309-330
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511412-2
- PDF | Request permission
Abstract:
A formula is derived for the Chern classes of the representation id $\int {\xi :P\int {H \to {U_{pn}}} }$ where P is cyclic of order P and $\xi :H \to {U_n}$ is a fintie dimensional unitary representation of the group H. The formula is applied to the problem of calculating the Chern classes of the “natural” representations ${\pi _j}:{\mathcal {S}_j} \to {U_j}$ of symmetric groups by permutation matrices.References
- Leonard Evens, On the Chern classes of representations of finite groups, Trans. Amer. Math. Soc. 115 (1965), 180–193. MR 212099, DOI 10.1090/S0002-9947-1965-0212099-X
- Leonard Evens, A generalization of the transfer map in the cohomology of groups, Trans. Amer. Math. Soc. 108 (1963), 54–65. MR 153725, DOI 10.1090/S0002-9947-1963-0153725-1
- Armand Borel, Topics in the homology theory of fibre bundles, Lecture Notes in Mathematics, No. 36, Springer-Verlag, Berlin-New York, 1967. Lectures given at the University of Chicago, 1954; Notes by Edward Halpern. MR 0221507, DOI 10.1007/BFb0096867
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- N. E. Steenrod and Emery Thomas, Cohomology operations derived from cyclic groups, Comment. Math. Helv. 32 (1957), 129–152. MR 92148, DOI 10.1007/BF02564575
- C. B. Thomas, An integral Riemann-Roch formula for flat line bundles, Proc. London Math. Soc. (3) 34 (1977), no. 1, 87–101. MR 432739, DOI 10.1112/plms/s3-34.1.87
- A. Grothendieck, Classes de Chern et representations linearies des groupes discrets, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 215–305 (French). MR 265370
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 309-330
- MSC: Primary 55R40; Secondary 20C30
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511412-2
- MathSciNet review: 511412