Measurable parametrizations and selections
HTML articles powered by AMS MathViewer
- by Douglas Cenzer and R. Daniel Mauldin
- Trans. Amer. Math. Soc. 245 (1978), 399-408
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511418-3
- PDF | Request permission
Abstract:
Let W be a Borel subset of $I \times I$ (where $I = [0,1]$) such that, for each x, ${W_x} = \{ y: (x,y) \in W\}$ is uncountable. It is shown that there is a map, g, of $I \times I$ onto W such that (1) for each x, $g(x, \cdot )$ is a Borel isomorphism of I onto ${W_x}$ and (2) both g and ${g^{ - 1}}$ are $S(I \times I)$-measurable maps. Here, if X is a topological space, $S(X)$ is the smallest family containing the open subsets of X which is closed under operation (A) and complementation. Notice that $S(X)$ is a subfamily of the universally or absolutely measurable subsets of X. This result answers a problem of A. H. Stone. This result improves a theorem of Wesley and as a corollary a selection theorem is obtained which extends the measurable selection theorem of von Neumann. We also show an analogous result holds if W is only assumed to be analytic.References
- Douglas Cenzer and R. Daniel Mauldin, Inductive definability: measure and category, Adv. in Math. 38 (1980), no. 1, 55–90. MR 594994, DOI 10.1016/0001-8708(80)90057-2
- J. R. Choksi, Measurable transformations on compact groups, Trans. Amer. Math. Soc. 184 (1973), 101–124 (1974). MR 338311, DOI 10.1090/S0002-9947-1973-0338311-9 F. Hausdorff, Set theory, Chelsea, New York, 1964. K. Kunugui, Sur un théorème d’existence dans la théorie des ensembles projectifs, Fund. Math. 29 (1937), 169-181.
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751 R. D. Mauldin, Borel parameterizations (preprint).
- John von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401–485. MR 29101, DOI 10.2307/1969463 P. S. Novikov, Sur les projections de certains ensembles mesurables B, Dokl. Akad. Nauk. SSSR (N.S.) 23 (1939), 864-865.
- Gerald E. Sacks, Measure-theoretic uniformity in recursion theory and set theory, Trans. Amer. Math. Soc. 142 (1969), 381–420. MR 253895, DOI 10.1090/S0002-9947-1969-0253895-6
- A. H. Stone, Topology and measure theory, Measure theory (Proc. Conf., Oberwolfach, 1975) Lecture Notes in Math., Vol. 541, Springer, Berlin, 1976, pp. 43–48. MR 0450492
- Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), no. 5, 859–903. MR 486391, DOI 10.1137/0315056
- Eugene Wesley, Extensions of the measurable choice theorem by means of forcing, Israel J. Math. 14 (1973), 104–114. MR 322129, DOI 10.1007/BF02761539
- Eugene Wesley, Borel preference orders in markets with a continuum of traders, J. Math. Econom. 3 (1976), no. 2, 155–165. MR 439054, DOI 10.1016/0304-4068(76)90024-0 —, On the existence of absolutely measurable selection functions (preprint). W. Yankov, Sur l’uniformisation des ensembles A, Dokl. Akad. Nauk SSSR (N.S.) 30 (1941), 597-598.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 399-408
- MSC: Primary 28A20; Secondary 04A15, 54H05
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511418-3
- MathSciNet review: 511418