Semifree actions on finite groups on homotopy spheres
HTML articles powered by AMS MathViewer
- by John Ewing
- Trans. Amer. Math. Soc. 245 (1978), 431-442
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511421-3
- PDF | Request permission
Abstract:
We show that for any finite group the group of semifree actions on homotopy spheres of some fixed even dimension is finite, provided that the dimension of the fixed point set is greater than 2. The argument shows that for such an action the normal bundle to the fixed point set is equivariantly, stably trivial.References
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 236952, DOI 10.2307/1970717
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- William Browder and Ted Petrie, Diffeomorphisms of manifolds and semifree actions on homotopy spheres, Bull. Amer. Math. Soc. 77 (1971), 160–163. MR 273636, DOI 10.1090/S0002-9904-1971-12646-0
- John Ewing, Spheres as fixed point sets, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 108, 445–455. MR 431233, DOI 10.1093/qmath/27.4.445
- Larry Joel Goldstein, Analytic number theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0498335
- Melvin Rothenberg, Differentiable group actions on spheres, Proc. Advanced Study Inst. on Algebraic Topology (Aarhus, 1970) Aarhus Univ., Matematisk Inst., Aarhus, 1970, pp. 455–475. MR 0301764
- Reinhard Schultz, Homotopy sphere pairs admitting semifree differentiable actions, Amer. J. Math. 96 (1974), 308–323. MR 368053, DOI 10.2307/2373635
- Reinhard Schultz, Rational $h$-cobordism invariants for lens space bundles, Quart. J. Math. Oxford Ser. (2) 25 (1974), 497–511. MR 372898, DOI 10.1093/qmath/25.1.497 —, Corrigenda, Quart. J. Math. Oxford Ser. 28 (1977), 128. —, Spherelike G-manifolds with exotic equivariant tangent bundles (preprint).
- Graeme Segal, Equivariant $K$-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129–151. MR 234452, DOI 10.1007/BF02684593
- Kai Wang, Semifree actions on homotopy spheres, Trans. Amer. Math. Soc. 211 (1975), 321–337. MR 377951, DOI 10.1090/S0002-9947-1975-0377951-X
- Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 431-442
- MSC: Primary 57S25; Secondary 57R85
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511421-3
- MathSciNet review: 511421