A new approach to the limit theory of recurrent Markov chains
HTML articles powered by AMS MathViewer
- by K. B. Athreya and P. Ney
- Trans. Amer. Math. Soc. 245 (1978), 493-501
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511425-0
- PDF | Request permission
Abstract:
Let $\{ {X_n}; n \geqslant 0\}$ be a Harris-recurrent Markov chain on a general state space. It is shown that there is a sequence of random times $\{ {N_i}; i \geqslant 1\}$ such that $\{ {X_{{N_i}}};{\text { }}i \geqslant 1\}$ are independent and identically distributed. This idea is used to show that $\{ {X_n}\}$ is equivalent to a process having a recurrence point, and to develop a regenerative scheme which leads to simple proofs of the ergodic theorem, existence and uniqueness of stationary measures.References
- K. B. Athreya, D. McDonald, and P. Ney, Limit theorems for semi-Markov processes and renewal theory for Markov chains, Ann. Probab. 6 (1978), no. 5, 788–797. MR 503952, DOI 10.1214/aop/1176995429
- W. Doblin, Éléments d’une théorie générale des chaînes simples constantes de Markoff, Ann. École Norm. (3) 57 (1940), 61–111 (French). MR 0004409
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- David Griffeath, Coupling methods for Markov processes, Studies in probability and ergodic theory, Adv. in Math. Suppl. Stud., vol. 2, Academic Press, New York-London, 1978, pp. 1–43. MR 517252
- T. E. Harris, The existence of stationary measures for certain Markov processes, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, University of California Press, Berkeley-Los Angeles, Calif., 1956, pp. 113–124. MR 0084889
- Jacques Neveu, Mathematical foundations of the calculus of probability, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1965. Translated by Amiel Feinstein. MR 0198505
- Steven Orey, Lecture notes on limit theorems for Markov chain transition probabilities, Van Nostrand Reinhold Mathematical Studies, No. 34, Van Nostrand Reinhold Co., London-New York-Toronto, 1971. MR 0324774
- D. Revuz, Markov chains, 2nd ed., North-Holland Mathematical Library, vol. 11, North-Holland Publishing Co., Amsterdam, 1984. MR 758799
- Charles Stone, On moment generating functions and renewal theory, Ann. Math. Statist. 36 (1965), 1298–1301. MR 179857, DOI 10.1214/aoms/1177700003
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 245 (1978), 493-501
- MSC: Primary 60J10; Secondary 60K05
- DOI: https://doi.org/10.1090/S0002-9947-1978-0511425-0
- MathSciNet review: 511425