Difference equations: disconjugacy, principal solutions, Green’s functions, complete monotonicity
HTML articles powered by AMS MathViewer
- by Philip Hartman PDF
- Trans. Amer. Math. Soc. 246 (1978), 1-30 Request permission
Abstract:
We find analogues of known results on nth order linear differential equations for nth order linear difference equations. These include the concept of disconjugacy, Pólya’s criterion for disconjugacy, Frobenius factorizations, generalized Sturm theorems, existence and properties of principal solutions, signs of Green’s functions, and completely monotone families of solutions of equations depending on a parameter.References
- Maxime Bôcher, Boundary problems and Green’s functions for linear differential and difference equations, Ann. of Math. (2) 13 (1911/12), no. 1-4, 71–88. MR 1502418, DOI 10.2307/1968072
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785, DOI 10.1007/BFb0058618 M. Fekete, Ueber ein Problem von Laguerre, Rend. Circ. Mat. Palermo 34 (1912), 89-100.
- Tomlinson Fort, Finite Differences and Difference Equations in the Real Domain, Oxford, at the Clarendon Press, 1948. MR 0024567
- F. R. Gantmacher and M. G. Kreĭn, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, Mathematische Lehrbücher und Monographien, I. Abteilung, Bd. V, Akademie-Verlag, Berlin, 1960 (German). Wissenschaftliche Bearbeitung der deutschen Ausgabe: Alfred Stöhr. MR 0114338
- Philip Hartman, Principal solutions of disconjugate $n-\textrm {th}$ order linear differential equations, Amer. J. Math. 91 (1969), 306–362. MR 247181, DOI 10.2307/2373512
- Philip Hartman, Corrigendum and addendum: “Principal solutions of disconjugate $n$-th order linear differential equations”, Amer. J. Math. 93 (1971), 439–451. MR 291557, DOI 10.2307/2373386
- Philip Hartman, Completely monotone families of solutions of $n$-th order linear differential equations and infinitely divisible distributions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 2, 267–287. MR 404760 P. Hartman and A. Wintner, Linear differential and difference equations with monotone coefficients, Amer. J. Math. 75 (1953), 731-743; see also Amer. J. Math. 76 (1954), 199-206.
- Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif., 1968. MR 0230102
- M. Krein, Sur les fonctions de Green non-symétriques oscillatoires des opérateurs différentiels ordinaires, C. R. (Doklady) Acad. Sci. URSS (N. S.) 25 (1939), 643–646 (French). MR 0002434
- A. Ju. Levin, Some questions on the oscillation of solutions of linear differential equations, Dokl. Akad. Nauk SSSR 148 (1963), 512–515 (Russian). MR 0146450
- A. Ju. Levin, The non-oscillation of solutions of the equation $x^{(n)}+p_{1}(t)x^{(n-1)}+\cdots +p_{n} (t)x=0$, Uspehi Mat. Nauk 24 (1969), no. 2 (146), 43–96 (Russian). MR 0254328
- Lee Lorch and Peter Szego, Monotonicity of the differences of zeros of Bessel functions as a function of order, Proc. Amer. Math. Soc. 15 (1964), 91–96. MR 158106, DOI 10.1090/S0002-9939-1964-0158106-9
- Gabriele Mammana, Decomposizione delle espressioni differenziali lineari omogenee in prodotti di fattori simbolici e applicazione relativa allo studio delle equazioni differenziali lineari, Math. Z. 33 (1931), no. 1, 186–231 (Italian). MR 1545209, DOI 10.1007/BF01174351
- Ju. V. Pokornyĭ, Some estimates of the Green’s function of a multi-point boundary value problem, Mat. Zametki 4 (1968), 533–540 (Russian). MR 236453
- G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), no. 4, 312–324. MR 1501228, DOI 10.1090/S0002-9947-1922-1501228-5 G. Pólya and G. Szegö, Aufgaben und Lehrsätzen aus der Analysis, vol. 2, reprint, Dover, New York, 1945.
- Thomas L. Sherman, Properties of solutions of $n\textrm {th}$ order linear differential equations, Pacific J. Math. 15 (1965), 1045–1060. MR 185185, DOI 10.2140/pjm.1965.15.1045 G. N. Watson, Theory of Bessel functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1958.
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 1-30
- MSC: Primary 39A12
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515528-6
- MathSciNet review: 515528