On the free boundary of a quasivariational inequality arising in a problem of quality control
HTML articles powered by AMS MathViewer
- by Avner Friedman PDF
- Trans. Amer. Math. Soc. 246 (1978), 95-110 Request permission
Abstract:
In some recent work in stochastic optimization with partial observation occurring in quality control problems, Anderson and Friedman [1], [2] have shown that the optimal cost can be determined as a solution of the quasi variational inequality \[ \begin {gathered} Mw\left ( p \right ) + f\left ( p \right ) \geq 0, w\left ( p \right ) \leq \psi \left ( {p; w} \right ), \left ( {Mw\left ( p \right ) + f\left ( p \right )} \right )\left ( {w\left ( p \right ) - \psi \left ( {p; w} \right )} \right ) = 0 \end {gathered} \] in the simplex ${p_i} > 0$, $\sum \nolimits _{i = 1}^n {{p_i} = 1}$. Here f, $\psi$ are given functions of p, $\psi$ is a functional of w, and M is a given elliptic operator degenerating on the boundary. This system has a unique solution when M does not degenerate in the interior of the simplex. The aim of this paper is to study the free boundary, that is, the boundary of the set where $w\left ( p \right ) < \psi \left ( {p; w} \right )$.References
- Robert F. Anderson and Avner Friedman, A quality control problem and quasi-variational inequalities, Arch. Rational Mech. Anal. 63 (1976/77), no. 3, 205–252. MR 456857, DOI 10.1007/BF00251581
- Robert F. Anderson and Avner Friedman, Multidimensional quality control problems and quasivariational inequalities, Trans. Amer. Math. Soc. 246 (1978), 31–76. MR 515529, DOI 10.1090/S0002-9947-1978-0515529-8
- Alain Bensoussan, Haïm Brézis, and Avner Friedman, Estimates on the free boundary for quasi variational inequalities, Comm. Partial Differential Equations 2 (1977), no. 3, 297–321. MR 473509, DOI 10.1080/03605307708820032
- Alain Bensoussan and Avner Friedman, On the support of the solution of a system of quasivariational inequalities, J. Math. Anal. Appl. 65 (1978), no. 3, 660–674. MR 510477, DOI 10.1016/0022-247X(78)90170-1 A. Bensoussan and J.-L. Lions, Contrôle impulsionnel et temps d’arrêt inéquations variationnelles et quasi-variationnelles d’évolution, Cahiers de mathématiques de la décision, no. 7523, Université Paris 9, Dauphine, 1975.
- H. Brezis, Solutions of variational inequalities, with compact support, Uspehi Mat. Nauk 29 (1974), no. 2 (176), 103–108 (Russian). Translated from the English by Ju. A. Dubinskiĭ; Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ (1901–1973), I. MR 0481460
- Luis A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math. 139 (1977), no. 3-4, 155–184. MR 454350, DOI 10.1007/BF02392236
- L. A. Caffarelli and N. M. Rivière, Smoothness and analyticity of free boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 2, 289–310. MR 412940
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 95-110
- MSC: Primary 93E20; Secondary 49A29, 62N10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515531-6
- MathSciNet review: 515531