On regular semigroups and their multiplication
HTML articles powered by AMS MathViewer
- by Pierre Antoine Grillet PDF
- Trans. Amer. Math. Soc. 246 (1978), 111-138 Request permission
Abstract:
A method is given for the construction of regular semigroups in terms of groups and partially ordered sets. This describes any regular semigroup S and its multiplication by means of triples $\left ( {i, g, \lambda } \right )$ with $i \in S/{\mathcal {R}}$, $\lambda \in S/{\mathcal {L}}$ and g in the Schützenberger group of the corresponding ${\mathcal {D}}$-class. It is shown that the multiplication on S is determined by certain simple products. Furthermore the associativity of these simple products implies associativity of the entire multiplication.References
- G. R. Baird, On semigroups and uniform partial bands, Semigroup Forum 4 (1972), 185–188. MR 291321, DOI 10.1007/BF02570784
- A. H. Clifford, The structure of bisimple left unipotent semigroups as ordered pairs, Semigroup Forum 5 (1972/73), 137–144. MR 333040, DOI 10.1007/BF02572883
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791 Nicolas Farès, Idempotents et ${\mathcal {D}}$-classes dans les demigroups et les anneaux, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A341-A343. MR 40 #2777.
- Pierre Antoine Grillet, Left coset extensions, Semigroup Forum 7 (1974), no. 1-4, 200–263. MR 382492, DOI 10.1007/BF02315974 —, A coherence theorem for Schützenberger groups, J. Austral. Math. Soc. (submitted).
- Jonathan Leech, ${\cal H}$-coextensions of monoids, Mem. Amer. Math. Soc. 1 (1975), no. issue 2, 157, 1–66. MR 376919
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 111-138
- MSC: Primary 20M10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515532-8
- MathSciNet review: 515532