Compactifications of $\textbf {C}^{n}$
HTML articles powered by AMS MathViewer
- by L. Brenton and J. Morrow
- Trans. Amer. Math. Soc. 246 (1978), 139-153
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515533-X
- PDF | Request permission
Abstract:
Let X be a compactification of ${{\text {C}}^n}$. We assume that X is a compact complex manifold and that $A = X - {{\text {C}}^n}$ is a proper subvariety of X. If we suppose that A is a Kähler manifold, then we prove that X is projective algebraic, ${H^{\ast }}\left ( {A, {\textbf {Z}}} \right ) \cong {H^{\ast }}\left ( {{{\textbf {P}}^{n - 1}}, {\textbf {Z}}} \right )$, and ${H^{\ast }}\left ( {X, {\textbf {Z}}} \right ) \cong {H^{\ast }}\left ( {{{\textbf {P}}^n}, {\textbf {Z}}} \right )$. Various additional conditions are shown to imply that $X = {{\textbf {P}}^n}$. It is known that no additional conditions are needed to imply $X = {{\textbf {P}}^n}$ in the cases $n = 1, 2$. In this paper we prove that if $n = 3$, $X = {{\textbf {P}}^3}$.References
- Enrico Bombieri and Dale Husemoller, Classification and embeddings of surfaces, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1975, pp. 329–420. MR 0506292
- Lawrence Brenton, A note on compactifications of $\textbf {C}^{2}$, Math. Ann. 206 (1973), 303–310. MR 338457, DOI 10.1007/BF01355983
- Lawrence Brenton, Some algebraicity criteria for singular surfaces, Invent. Math. 41 (1977), no. 2, 129–147. MR 463508, DOI 10.1007/BF01418372
- Lawrence Brenton, Some examples of singular compact analytic surfaces which are homotopy equivalent to the complex projective plane, Topology 16 (1977), no. 4, 423–433. MR 470253, DOI 10.1016/0040-9383(77)90047-7
- Lawrence Brenton and James A. Morrow, Compactifying $C^{n}$, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 241–246. MR 0454083
- Maurizio Cornalba and Phillip Griffiths, Analytic cycles and vector bundles on non-compact algebraic varieties, Invent. Math. 28 (1975), 1–106. MR 367263, DOI 10.1007/BF01389905
- Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368 (German). MR 137127, DOI 10.1007/BF01441136
- Phillip A. Griffiths, The extension problem in complex analysis. II. Embeddings with positive normal bundle, Amer. J. Math. 88 (1966), 366–446. MR 206980, DOI 10.2307/2373200
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Friedrich Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math. (2) 60 (1954), 213–236. MR 66013, DOI 10.2307/1969629
- F. Hirzebruch and K. Kodaira, On the complex projective spaces, J. Math. Pures Appl. (9) 36 (1957), 201–216. MR 92195
- Masahisa Inoue, On surfaces of Class $\textrm {VII}_{0}$, Invent. Math. 24 (1974), 269–310. MR 342734, DOI 10.1007/BF01425563
- Shoshichi Kobayashi and Takushiro Ochiai, Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ. 13 (1973), 31–47. MR 316745, DOI 10.1215/kjm/1250523432
- K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751–798. MR 187255, DOI 10.2307/2373157
- K. Kodaira, Holomorphic mappings of polydiscs into compact complex manifolds, J. Differential Geometry 6 (1971/72), 33–46. MR 301228, DOI 10.4310/jdg/1214430217
- Henry B. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), no. 6, 1257–1295. MR 568898, DOI 10.2307/2374025 B. Moisheson, On n-dimensional compact complex varieties with n algebraically independent meromorphic functions, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 133-174, 345-386, 621-656; English transl., Amer. Math. Soc. Transl. (2) 63 (1967), 51-177.
- James A. Morrow, A survey of some results on complex Kähler manifolds, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 315–324. MR 0258072
- James A. Morrow, Minimal normal compactifications of $\textbf {C^{2}}$, Rice Univ. Stud. 59 (1973), no. 1, 97–112. MR 333255
- J. Morrow and H. Rossi, Some theorems of algebraicity for complex spaces, J. Math. Soc. Japan 27 (1975), 167–183. MR 407326, DOI 10.2969/jmsj/02720167
- Raghavan Narasimhan, The Levi problem for complex spaces. II, Math. Ann. 146 (1962), 195–216. MR 182747, DOI 10.1007/BF01470950
- S. P. Novikov, Topological invariance of rational classes of Pontrjagin, Dokl. Akad. Nauk SSSR 163 (1965), 298–300 (Russian). MR 0193644
- C. P. Ramanujam, A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69–88. MR 286801, DOI 10.2307/1970735
- Reinhold Remmert and Ton van de Ven, Zwei Sätze über die komplex-projektive Ebene, Nieuw Arch. Wisk. (3) 8 (1960), 147–157 (German). MR 132557
- A. van de Ven, Analytic compactifications of complex homology cells, Math. Ann. 147 (1962), 189–204. MR 140125, DOI 10.1007/BF01470739
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 139-153
- MSC: Primary 32J10; Secondary 32C40
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515533-X
- MathSciNet review: 515533