Automorphisms of $\textrm {GL}_{n}(R)$
HTML articles powered by AMS MathViewer
- by B. R. McDonald PDF
- Trans. Amer. Math. Soc. 246 (1978), 155-171 Request permission
Abstract:
Let R denote a commutative ring having 2 a unit. Let ${\text {G}}{{\text {L}}_n}\left ( R \right )$ denote the general linear group of all $n \times n$ invertible matrices over R. Let $\wedge$ be an automorphism of ${\text {G}}{{\text {L}}_n}\left ( R \right )$. An automorphism $\wedge$ is βstableβ if it behaves properly relative to families of commuting involutions (see Β§IV). We show that if R is connected, i.e., 0 and 1 are only idempotents, then all automorphisms $\wedge$ are stable. Further, if $n \geqslant 3$, R is an arbitrary commutative ring with 2 a unit, and $\wedge$ is a stable automorphism, then we obtain a description of $\wedge$ as a composition of standard automorphisms.References
-
N. Bourbaki, Commutative algebra, Addison-Wesley, Reading, Mass., 1972.
β, Algebra. Part I, Addison-Wesley, Reading, Mass., 1973.
- Gerald Garfinkel, Generic splitting algebras for $\textrm {Pic}$, Pacific J. Math. 35 (1970), 369β380. MR 285520, DOI 10.2140/pjm.1970.35.369
- Andy R. Magid, Ultrafunctors, Canadian J. Math. 27 (1975), 372β375. MR 382401, DOI 10.4153/CJM-1975-045-9
- J. Pomfret and B. R. McDonald, Automorphisms of $\textrm {GL}_{n}(R),\,R$ a local ring, Trans. Amer. Math. Soc. 173 (1972), 379β388. MR 310087, DOI 10.1090/S0002-9947-1972-0310087-X
- Bernard R. McDonald, Automorphisms of $\textrm {GL}_{n}(R)$, Trans. Amer. Math. Soc. 215 (1976), 145β159. MR 382467, DOI 10.1090/S0002-9947-1976-0382467-1
- Bernard R. McDonald, Geometric algebra over local rings, Pure and Applied Mathematics, No. 36, Marcel Dekker, Inc., New York-Basel, 1976. MR 0476639
- O. T. OβMeara, The automorphisms of the linear groups over any integral domain, J. Reine Angew. Math. 223 (1966), 56β100. MR 199278, DOI 10.1515/crll.1966.223.56 β, Lectures on linear groups, CBMS Regional Conf. Ser. in Math., vol. 22, Amer. Math. Soc., Providence, R. I., 1973.
- Cheh-hsian Wan, On the automorphisms of linear groups over a non-commutative Euclidean ring of characteristic $\not =\,2$, Sci. Record (N.S.) 1 (1957), no.Β 1, 5β8. MR 94391
- Yan Shi-jian, Linear groups over a ring, Chinese Math.βActa 7 (1965), 163β179. MR 0222185
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 155-171
- MSC: Primary 20G99
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515534-1
- MathSciNet review: 515534