The Fuglede commutativity theorem modulo the Hilbert-Schmidt class and generating functions for matrix operators. I
HTML articles powered by AMS MathViewer
- by Gary Weiss PDF
- Trans. Amer. Math. Soc. 246 (1978), 193-209 Request permission
Abstract:
We prove the following statements about bounded linear operators on a separable, complex Hilbert space: (1) Every normal operator N that is similar to a Hilbert-Schmidt perturbation of a diagonal operator D is unitarily equivalent to a Hilbert-Schmidt perturbation of D; (2) For every normal operator N, diagonal operator D and bounded operator X, the Hilbert-Schmidt norms (finite or infinite) of $NX - XD$ and ${N^{\ast }}X - X{D^{\ast }}$ are equal; (3) If $NX - XN$ and ${N^{\ast }}X - X{N^{\ast }}$ are Hilbert-Schmidt operators, then their Hilbert-Schmidt norms are equal; (4) If X is a Hilbert-Schmidt operator and N is a normal operator so that $NX - XN$ is a trace class operator, then Trace$\left ( {NX - XN} \right ) = 0$; (5) For every normal operator N that is a Hilbert-Schmidt perturbation of a diagonal operator, and every bounded operator X, the Hilbert-Schmidt norms (finite or infinite) of $NX - XN$ and ${N^{\ast }}X - X{N^{\ast }}$ are equal. The main technique employs the use of a new concept which we call ’generating functions for matrices’.References
- I. David Berg, An extension of the Weyl-von Neumann theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365–371. MR 283610, DOI 10.1090/S0002-9947-1971-0283610-0
- C. A. Berger and B. I. Shaw, Selfcommutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc. 79 (1973), 1193–1199, (1974). MR 374972, DOI 10.1090/S0002-9904-1973-13375-0
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- R. W. Carey and J. D. Pincus, Perturbation by trace class operators, Bull. Amer. Math. Soc. 80 (1974), 758–759. MR 344919, DOI 10.1090/S0002-9904-1974-13590-1
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142, DOI 10.1090/mmono/018
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- J. William Helton and Roger E. Howe, Integral operators: commutators, traces, index and homology, Proceedings of a Conference Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 141–209. MR 0390829 J. von Neumann, Charakterisierung des Spektrums eines Integraloperators, Actualités Sci. Indust., no. 229, Hermann, Paris, 1935. Gary Weiss, Commutators and operator ideals, Dissertation, Univ. of Michigan, Ann Arbor, Mich., 1975. —, Fuglede’s commutativity theorem modulo operator ideals (preprint). H. Weyl, Über beschrankte quadratischen Formen deren Differenz vollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 246 (1978), 193-209
- MSC: Primary 47B15; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9947-1978-0515536-5
- MathSciNet review: 515536